/* dlarft.f -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b8 = 1.; /* > \brief \b DLARFT forms the triangular factor T of a block reflector H = I - vtvH */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLARFT + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) */ /* .. Scalar Arguments .. */ /* CHARACTER DIRECT, STOREV */ /* INTEGER K, LDT, LDV, N */ /* .. */ /* .. Array Arguments .. */ /* DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLARFT forms the triangular factor T of a real block reflector H */ /* > of order n, which is defined as a product of k elementary reflectors. */ /* > */ /* > If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */ /* > */ /* > If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */ /* > */ /* > If STOREV = 'C', the vector which defines the elementary reflector */ /* > H(i) is stored in the i-th column of the array V, and */ /* > */ /* > H = I - V * T * V**T */ /* > */ /* > If STOREV = 'R', the vector which defines the elementary reflector */ /* > H(i) is stored in the i-th row of the array V, and */ /* > */ /* > H = I - V**T * T * V */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] DIRECT */ /* > \verbatim */ /* > DIRECT is CHARACTER*1 */ /* > Specifies the order in which the elementary reflectors are */ /* > multiplied to form the block reflector: */ /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */ /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */ /* > \endverbatim */ /* > */ /* > \param[in] STOREV */ /* > \verbatim */ /* > STOREV is CHARACTER*1 */ /* > Specifies how the vectors which define the elementary */ /* > reflectors are stored (see also Further Details): */ /* > = 'C': columnwise */ /* > = 'R': rowwise */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the block reflector H. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The order of the triangular factor T (= the number of */ /* > elementary reflectors). K >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] V */ /* > \verbatim */ /* > V is DOUBLE PRECISION array, dimension */ /* > (LDV,K) if STOREV = 'C' */ /* > (LDV,N) if STOREV = 'R' */ /* > The matrix V. See further details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDV */ /* > \verbatim */ /* > LDV is INTEGER */ /* > The leading dimension of the array V. */ /* > If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */ /* > \endverbatim */ /* > */ /* > \param[in] TAU */ /* > \verbatim */ /* > TAU is DOUBLE PRECISION array, dimension (K) */ /* > TAU(i) must contain the scalar factor of the elementary */ /* > reflector H(i). */ /* > \endverbatim */ /* > */ /* > \param[out] T */ /* > \verbatim */ /* > T is DOUBLE PRECISION array, dimension (LDT,K) */ /* > The k by k triangular factor T of the block reflector. */ /* > If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */ /* > lower triangular. The rest of the array is not used. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. LDT >= K. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date September 2012 */ /* > \ingroup doubleOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The shape of the matrix V and the storage of the vectors which define */ /* > the H(i) is best illustrated by the following example with n = 5 and */ /* > k = 3. The elements equal to 1 are not stored. */ /* > */ /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */ /* > */ /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */ /* > ( v1 1 ) ( 1 v2 v2 v2 ) */ /* > ( v1 v2 1 ) ( 1 v3 v3 ) */ /* > ( v1 v2 v3 ) */ /* > ( v1 v2 v3 ) */ /* > */ /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */ /* > */ /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */ /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */ /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */ /* > ( 1 v3 ) */ /* > ( 1 ) */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int igraphdlarft_(char *direct, char *storev, integer *n, integer * k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, integer *ldt) { /* System generated locals */ integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ integer i__, j, prevlastv; extern logical igraphlsame_(char *, char *); extern /* Subroutine */ int igraphdgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer lastv; extern /* Subroutine */ int igraphdtrmv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *); /* -- LAPACK auxiliary routine (version 3.4.2) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* September 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --tau; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; /* Function Body */ if (*n == 0) { return 0; } if (igraphlsame_(direct, "F")) { prevlastv = *n; i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { prevlastv = max(i__,prevlastv); if (tau[i__] == 0.) { /* H(i) = I */ i__2 = i__; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = 0.; } } else { /* general case */ if (igraphlsame_(storev, "C")) { /* Skip any trailing zeros. */ lastv = *n; L14: if (v[lastv + i__ * v_dim1] != 0.) { goto L15; } if (lastv == i__ + 1) { goto L15; } --lastv; goto L14; L15: /* DO LASTV = N, I+1, -1 */ /* IF( V( LASTV, I ).NE.ZERO ) EXIT */ /* END DO */ i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[i__ + j * v_dim1]; } j = min(lastv,prevlastv); /* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) */ i__2 = j - i__; i__3 = i__ - 1; d__1 = -tau[i__]; igraphdgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + 1 + v_dim1], ldv, &v[i__ + 1 + i__ * v_dim1], &c__1, & c_b8, &t[i__ * t_dim1 + 1], &c__1); } else { /* Skip any trailing zeros. */ lastv = *n; L16: if (v[i__ + lastv * v_dim1] != 0.) { goto L17; } if (lastv == i__ + 1) { goto L17; } --lastv; goto L16; L17: /* DO LASTV = N, I+1, -1 */ /* IF( V( I, LASTV ).NE.ZERO ) EXIT */ /* END DO */ i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[j + i__ * v_dim1]; } j = min(lastv,prevlastv); /* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T */ i__2 = i__ - 1; i__3 = j - i__; d__1 = -tau[i__]; igraphdgemv_("No transpose", &i__2, &i__3, &d__1, &v[(i__ + 1) * v_dim1 + 1], ldv, &v[i__ + (i__ + 1) * v_dim1], ldv, &c_b8, &t[i__ * t_dim1 + 1], &c__1); } /* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */ i__2 = i__ - 1; igraphdtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[ t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1); t[i__ + i__ * t_dim1] = tau[i__]; if (i__ > 1) { prevlastv = max(prevlastv,lastv); } else { prevlastv = lastv; } } } } else { prevlastv = 1; for (i__ = *k; i__ >= 1; --i__) { if (tau[i__] == 0.) { /* H(i) = I */ i__1 = *k; for (j = i__; j <= i__1; ++j) { t[j + i__ * t_dim1] = 0.; } } else { /* general case */ if (i__ < *k) { if (igraphlsame_(storev, "C")) { /* Skip any leading zeros. */ lastv = 1; L34: if (v[lastv + i__ * v_dim1] != 0.) { goto L35; } if (lastv == i__ - 1) { goto L35; } ++lastv; goto L34; L35: /* DO LASTV = 1, I-1 */ /* IF( V( LASTV, I ).NE.ZERO ) EXIT */ /* END DO */ i__1 = *k; for (j = i__ + 1; j <= i__1; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[*n - *k + i__ + j * v_dim1]; } j = max(lastv,prevlastv); /* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) */ i__1 = *n - *k + i__ - j; i__2 = *k - i__; d__1 = -tau[i__]; igraphdgemv_("Transpose", &i__1, &i__2, &d__1, &v[j + (i__ + 1) * v_dim1], ldv, &v[j + i__ * v_dim1], & c__1, &c_b8, &t[i__ + 1 + i__ * t_dim1], & c__1); } else { /* Skip any leading zeros. */ lastv = 1; /* L36: */ if (v[i__ + lastv * v_dim1] != 0.) { goto L37; } if (lastv == i__ - 1) { goto L37; } ++lastv; L37: /* DO LASTV = 1, I-1 */ /* IF( V( I, LASTV ).NE.ZERO ) EXIT */ /* END DO */ i__1 = *k; for (j = i__ + 1; j <= i__1; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[j + (*n - *k + i__) * v_dim1]; } j = max(lastv,prevlastv); /* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T */ i__1 = *k - i__; i__2 = *n - *k + i__ - j; d__1 = -tau[i__]; igraphdgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ + 1 + j * v_dim1], ldv, &v[i__ + j * v_dim1], ldv, &c_b8, &t[i__ + 1 + i__ * t_dim1], &c__1 ); } /* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */ i__1 = *k - i__; igraphdtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ * t_dim1], &c__1) ; if (i__ > 1) { prevlastv = min(prevlastv,lastv); } else { prevlastv = lastv; } } t[i__ + i__ * t_dim1] = tau[i__]; } } } return 0; /* End of DLARFT */ } /* dlarft_ */