{-# LANGUAGE CPP #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} -- | Interacting with the iserv interpreter, whether it is running on an -- external process or in the current process. -- module GHC.Runtime.Interpreter ( module GHC.Runtime.Interpreter.Types -- * High-level interface to the interpreter , evalStmt, EvalStatus_(..), EvalStatus, EvalResult(..), EvalExpr(..) , resumeStmt , abandonStmt , evalIO , evalString , evalStringToIOString , mallocData , createBCOs , addSptEntry , mkCostCentres , costCentreStackInfo , newBreakArray , storeBreakpoint , breakpointStatus , getBreakpointVar , getClosure , getModBreaks , seqHValue , interpreterDynamic , interpreterProfiled -- * The object-code linker , initObjLinker , lookupSymbol , lookupClosure , loadDLL , loadArchive , loadObj , unloadObj , addLibrarySearchPath , removeLibrarySearchPath , resolveObjs , findSystemLibrary , interpCmd , withExtInterp , withExtInterpStatus , withIServ , withJSInterp , stopInterp , purgeLookupSymbolCache , freeReallyRemoteRef , freeHValueRefs , mkFinalizedHValue , wormhole, wormholeRef , fromEvalResult -- * Reexport for convenience , Message (..) , module GHC.Runtime.Interpreter.Process ) where import GHC.Prelude import GHC.Runtime.Interpreter.Types import GHC.Runtime.Interpreter.JS import GHC.Runtime.Interpreter.Process import GHC.Runtime.Utils import GHCi.Message import GHCi.RemoteTypes import GHCi.ResolvedBCO import GHCi.BreakArray (BreakArray) import GHC.Types.BreakInfo (BreakInfo(..)) import GHC.ByteCode.Types import GHC.Linker.Types import GHC.Data.Maybe import GHC.Data.FastString import GHC.Types.Unique import GHC.Types.SrcLoc import GHC.Types.Unique.FM import GHC.Types.Basic import GHC.Utils.Panic import GHC.Utils.Exception as Ex import GHC.Utils.Outputable(brackets, ppr, showSDocUnsafe) import GHC.Utils.Fingerprint import GHC.Utils.Misc import GHC.Unit.Module import GHC.Unit.Module.ModIface import GHC.Unit.Home.ModInfo import GHC.Unit.Env #if defined(HAVE_INTERNAL_INTERPRETER) import GHCi.Run import GHC.Platform.Ways #endif import Control.Concurrent import Control.Monad import Control.Monad.IO.Class import Control.Monad.Catch as MC (mask) import Data.Binary import Data.Binary.Put import Data.ByteString (ByteString) import qualified Data.ByteString.Lazy as LB import Data.Array ((!)) import Data.IORef import Foreign hiding (void) import qualified GHC.Exts.Heap as Heap import GHC.Stack.CCS (CostCentre,CostCentreStack) import System.Directory import System.Process import GHC.Conc (pseq, par) {- Note [Remote GHCi] ~~~~~~~~~~~~~~~~~~ When the flag -fexternal-interpreter is given to GHC, interpreted code is run in a separate process called iserv, and we communicate with the external process over a pipe using Binary-encoded messages. Motivation ~~~~~~~~~~ When the interpreted code is running in a separate process, it can use a different "way", e.g. profiled or dynamic. This means - compiling Template Haskell code with -prof does not require building the code without -prof first - when GHC itself is profiled, it can interpret unprofiled code, and the same applies to dynamic linking. - An unprofiled GHCi can load and run profiled code, which means it can use the stack-trace functionality provided by profiling without taking the performance hit on the compiler that profiling would entail. For other reasons see remote-GHCi on the wiki. Implementation Overview ~~~~~~~~~~~~~~~~~~~~~~~ The main pieces are: - libraries/ghci, containing: - types for talking about remote values (GHCi.RemoteTypes) - the message protocol (GHCi.Message), - implementation of the messages (GHCi.Run) - implementation of Template Haskell (GHCi.TH) - a few other things needed to run interpreted code - top-level iserv directory, containing the codefor the external server. This is a fairly simple wrapper, most of the functionality is provided by modules in libraries/ghci. - This module which provides the interface to the server used by the rest of GHC. GHC works with and without -fexternal-interpreter. With the flag, all interpreted code is run by the iserv binary. Without the flag, interpreted code is run in the same process as GHC. Things that do not work with -fexternal-interpreter ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dynCompileExpr cannot work, because we have no way to run code of an unknown type in the remote process. This API fails with an error message if it is used with -fexternal-interpreter. Other Notes on Remote GHCi ~~~~~~~~~~~~~~~~~~~~~~~~~~ * This wiki page has an implementation overview: https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/external-interpreter * Note [External GHCi pointers] in "GHC.Runtime.Interpreter" * Note [Remote Template Haskell] in libraries/ghci/GHCi/TH.hs -} -- | Run a command in the interpreter's context. With -- @-fexternal-interpreter@, the command is serialized and sent to an -- external iserv process, and the response is deserialized (hence the -- @Binary@ constraint). With @-fno-external-interpreter@ we execute -- the command directly here. interpCmd :: Binary a => Interp -> Message a -> IO a interpCmd interp msg = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> run msg -- Just run it directly #endif ExternalInterp ext -> withExtInterp ext $ \inst -> uninterruptibleMask_ $ -- Note [uninterruptibleMask_ and interpCmd] sendMessage inst msg withExtInterp :: ExceptionMonad m => ExtInterp -> (forall d. ExtInterpInstance d -> m a) -> m a withExtInterp ext action = case ext of ExtJS i -> withJSInterp i action ExtIServ i -> withIServ i action withExtInterpStatus :: ExtInterp -> (forall d. ExtInterpStatusVar d -> m a) -> m a withExtInterpStatus ext action = case ext of ExtJS i -> action (interpStatus i) ExtIServ i -> action (interpStatus i) -- Note [uninterruptibleMask_ and interpCmd] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- If we receive an async exception, such as ^C, while communicating -- with the iserv process then we will be out-of-sync and not be able -- to recover. Thus we use uninterruptibleMask_ during -- communication. A ^C will be delivered to the iserv process (because -- signals get sent to the whole process group) which will interrupt -- the running computation and return an EvalException result. -- | Grab a lock on the 'IServ' and do something with it. -- Overloaded because this is used from TcM as well as IO. withIServ :: (ExceptionMonad m) => IServ -> (ExtInterpInstance () -> m a) -> m a withIServ (ExtInterpState cfg mstate) action = do inst <- spawnInterpMaybe cfg spawnIServ mstate action inst -- | Spawn JS interpreter if it isn't already running and execute the given action -- -- Update the interpreter state. withJSInterp :: ExceptionMonad m => JSInterp -> (ExtInterpInstance JSInterpExtra -> m a) -> m a withJSInterp (ExtInterpState cfg mstate) action = do inst <- spawnInterpMaybe cfg spawnJSInterp mstate action inst -- | Spawn an interpreter if not already running according to the status in the -- MVar. Update the status, free pending heap references, and return the -- interpreter instance. -- -- This function is generic to support both the native external interpreter and -- the JS one. spawnInterpMaybe :: ExceptionMonad m => cfg -> (cfg -> IO (ExtInterpInstance d)) -> ExtInterpStatusVar d -> m (ExtInterpInstance d) spawnInterpMaybe cfg spawn mstatus = do inst <- liftIO $ modifyMVarMasked mstatus $ \case -- start the external iserv process if we haven't done so yet InterpPending -> do inst <- spawn cfg pure (InterpRunning inst, inst) InterpRunning inst -> do pure (InterpRunning inst, inst) -- free any ForeignRef that have been garbage collected. pending_frees <- liftIO $ swapMVar (instPendingFrees inst) [] liftIO $ when (not (null (pending_frees))) $ sendMessage inst (FreeHValueRefs pending_frees) -- run the inner action pure inst withExtInterpMaybe :: (ExceptionMonad m) => ExtInterp -> (forall d. Maybe (ExtInterpInstance d) -> m a) -> m a withExtInterpMaybe ext action = withExtInterpStatus ext $ \mstate -> do liftIO (readMVar mstate) >>= \case InterpPending {} -> action Nothing -- already shut down or never launched InterpRunning inst -> action (Just inst) -- ----------------------------------------------------------------------------- -- Wrappers around messages -- | Execute an action of type @IO [a]@, returning 'ForeignHValue's for -- each of the results. evalStmt :: Interp -> EvalOpts -> EvalExpr ForeignHValue -> IO (EvalStatus_ [ForeignHValue] [HValueRef]) evalStmt interp opts foreign_expr = do status <- withExpr foreign_expr $ \expr -> interpCmd interp (EvalStmt opts expr) handleEvalStatus interp status where withExpr :: EvalExpr ForeignHValue -> (EvalExpr HValueRef -> IO a) -> IO a withExpr (EvalThis fhv) cont = withForeignRef fhv $ \hvref -> cont (EvalThis hvref) withExpr (EvalApp fl fr) cont = withExpr fl $ \fl' -> withExpr fr $ \fr' -> cont (EvalApp fl' fr') resumeStmt :: Interp -> EvalOpts -> ForeignRef (ResumeContext [HValueRef]) -> IO (EvalStatus_ [ForeignHValue] [HValueRef]) resumeStmt interp opts resume_ctxt = do status <- withForeignRef resume_ctxt $ \rhv -> interpCmd interp (ResumeStmt opts rhv) handleEvalStatus interp status abandonStmt :: Interp -> ForeignRef (ResumeContext [HValueRef]) -> IO () abandonStmt interp resume_ctxt = withForeignRef resume_ctxt $ \rhv -> interpCmd interp (AbandonStmt rhv) handleEvalStatus :: Interp -> EvalStatus [HValueRef] -> IO (EvalStatus_ [ForeignHValue] [HValueRef]) handleEvalStatus interp status = case status of EvalBreak a b c d e f -> return (EvalBreak a b c d e f) EvalComplete alloc res -> EvalComplete alloc <$> addFinalizer res where addFinalizer (EvalException e) = return (EvalException e) addFinalizer (EvalSuccess rs) = EvalSuccess <$> mapM (mkFinalizedHValue interp) rs -- | Execute an action of type @IO ()@ evalIO :: Interp -> ForeignHValue -> IO () evalIO interp fhv = liftIO $ withForeignRef fhv $ \fhv -> interpCmd interp (EvalIO fhv) >>= fromEvalResult -- | Execute an action of type @IO String@ evalString :: Interp -> ForeignHValue -> IO String evalString interp fhv = liftIO $ withForeignRef fhv $ \fhv -> interpCmd interp (EvalString fhv) >>= fromEvalResult -- | Execute an action of type @String -> IO String@ evalStringToIOString :: Interp -> ForeignHValue -> String -> IO String evalStringToIOString interp fhv str = liftIO $ withForeignRef fhv $ \fhv -> interpCmd interp (EvalStringToString fhv str) >>= fromEvalResult -- | Allocate and store the given bytes in memory, returning a pointer -- to the memory in the remote process. mallocData :: Interp -> ByteString -> IO (RemotePtr ()) mallocData interp bs = interpCmd interp (MallocData bs) mkCostCentres :: Interp -> String -> [(String,String)] -> IO [RemotePtr CostCentre] mkCostCentres interp mod ccs = interpCmd interp (MkCostCentres mod ccs) -- | Create a set of BCOs that may be mutually recursive. createBCOs :: Interp -> [ResolvedBCO] -> IO [HValueRef] createBCOs interp rbcos = do -- Serializing ResolvedBCO is expensive, so we do it in parallel interpCmd interp (CreateBCOs puts) where puts = parMap doChunk (chunkList 100 rbcos) -- make sure we force the whole lazy ByteString doChunk c = pseq (LB.length bs) bs where bs = runPut (put c) -- We don't have the parallel package, so roll our own simple parMap parMap _ [] = [] parMap f (x:xs) = fx `par` (fxs `pseq` (fx : fxs)) where fx = f x; fxs = parMap f xs addSptEntry :: Interp -> Fingerprint -> ForeignHValue -> IO () addSptEntry interp fpr ref = withForeignRef ref $ \val -> interpCmd interp (AddSptEntry fpr val) costCentreStackInfo :: Interp -> RemotePtr CostCentreStack -> IO [String] costCentreStackInfo interp ccs = interpCmd interp (CostCentreStackInfo ccs) newBreakArray :: Interp -> Int -> IO (ForeignRef BreakArray) newBreakArray interp size = do breakArray <- interpCmd interp (NewBreakArray size) mkFinalizedHValue interp breakArray storeBreakpoint :: Interp -> ForeignRef BreakArray -> Int -> Int -> IO () storeBreakpoint interp ref ix cnt = do -- #19157 withForeignRef ref $ \breakarray -> interpCmd interp (SetupBreakpoint breakarray ix cnt) breakpointStatus :: Interp -> ForeignRef BreakArray -> Int -> IO Bool breakpointStatus interp ref ix = withForeignRef ref $ \breakarray -> interpCmd interp (BreakpointStatus breakarray ix) getBreakpointVar :: Interp -> ForeignHValue -> Int -> IO (Maybe ForeignHValue) getBreakpointVar interp ref ix = withForeignRef ref $ \apStack -> do mb <- interpCmd interp (GetBreakpointVar apStack ix) mapM (mkFinalizedHValue interp) mb getClosure :: Interp -> ForeignHValue -> IO (Heap.GenClosure ForeignHValue) getClosure interp ref = withForeignRef ref $ \hval -> do mb <- interpCmd interp (GetClosure hval) mapM (mkFinalizedHValue interp) mb -- | Send a Seq message to the iserv process to force a value #2950 seqHValue :: Interp -> UnitEnv -> ForeignHValue -> IO (EvalResult ()) seqHValue interp unit_env ref = withForeignRef ref $ \hval -> do status <- interpCmd interp (Seq hval) handleSeqHValueStatus interp unit_env status -- | Process the result of a Seq or ResumeSeq message. #2950 handleSeqHValueStatus :: Interp -> UnitEnv -> EvalStatus () -> IO (EvalResult ()) handleSeqHValueStatus interp unit_env eval_status = case eval_status of (EvalBreak is_exception _ ix mod_uniq resume_ctxt _) -> do -- A breakpoint was hit; inform the user and tell them -- which breakpoint was hit. resume_ctxt_fhv <- liftIO $ mkFinalizedHValue interp resume_ctxt let hmi = expectJust "handleRunStatus" $ lookupHptDirectly (ue_hpt unit_env) (mkUniqueGrimily mod_uniq) modl = mi_module (hm_iface hmi) bp | is_exception = Nothing | otherwise = Just (BreakInfo modl ix) sdocBpLoc = brackets . ppr . getSeqBpSpan putStrLn ("*** Ignoring breakpoint " ++ (showSDocUnsafe $ sdocBpLoc bp)) -- resume the seq (:force) processing in the iserv process withForeignRef resume_ctxt_fhv $ \hval -> do status <- interpCmd interp (ResumeSeq hval) handleSeqHValueStatus interp unit_env status (EvalComplete _ r) -> return r where getSeqBpSpan :: Maybe BreakInfo -> SrcSpan -- Just case: Stopped at a breakpoint, extract SrcSpan information -- from the breakpoint. getSeqBpSpan (Just BreakInfo{..}) = (modBreaks_locs (breaks breakInfo_module)) ! breakInfo_number -- Nothing case - should not occur! -- Reason: Setting of flags in libraries/ghci/GHCi/Run.hs:evalOptsSeq getSeqBpSpan Nothing = mkGeneralSrcSpan (fsLit "") breaks mod = getModBreaks $ expectJust "getSeqBpSpan" $ lookupHpt (ue_hpt unit_env) (moduleName mod) -- ----------------------------------------------------------------------------- -- Interface to the object-code linker initObjLinker :: Interp -> IO () initObjLinker interp = interpCmd interp InitLinker lookupSymbol :: Interp -> FastString -> IO (Maybe (Ptr ())) lookupSymbol interp str = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> fmap fromRemotePtr <$> run (LookupSymbol (unpackFS str)) #endif ExternalInterp ext -> case ext of ExtIServ i -> withIServ i $ \inst -> do -- Profiling of GHCi showed a lot of time and allocation spent -- making cross-process LookupSymbol calls, so I added a GHC-side -- cache which sped things up quite a lot. We have to be careful -- to purge this cache when unloading code though. cache <- readMVar (instLookupSymbolCache inst) case lookupUFM cache str of Just p -> return (Just p) Nothing -> do m <- uninterruptibleMask_ $ sendMessage inst (LookupSymbol (unpackFS str)) case m of Nothing -> return Nothing Just r -> do let p = fromRemotePtr r cache' = addToUFM cache str p modifyMVar_ (instLookupSymbolCache inst) (const (pure cache')) return (Just p) ExtJS {} -> pprPanic "lookupSymbol not supported by the JS interpreter" (ppr str) lookupClosure :: Interp -> String -> IO (Maybe HValueRef) lookupClosure interp str = interpCmd interp (LookupClosure str) purgeLookupSymbolCache :: Interp -> IO () purgeLookupSymbolCache interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> pure () #endif ExternalInterp ext -> withExtInterpMaybe ext $ \case Nothing -> pure () -- interpreter stopped, nothing to do Just inst -> modifyMVar_ (instLookupSymbolCache inst) (const (pure emptyUFM)) -- | loadDLL loads a dynamic library using the OS's native linker -- (i.e. dlopen() on Unix, LoadLibrary() on Windows). It takes either -- an absolute pathname to the file, or a relative filename -- (e.g. "libfoo.so" or "foo.dll"). In the latter case, loadDLL -- searches the standard locations for the appropriate library. -- -- Returns: -- -- Nothing => success -- Just err_msg => failure loadDLL :: Interp -> String -> IO (Maybe String) loadDLL interp str = interpCmd interp (LoadDLL str) loadArchive :: Interp -> String -> IO () loadArchive interp path = do path' <- canonicalizePath path -- Note [loadObj and relative paths] interpCmd interp (LoadArchive path') loadObj :: Interp -> String -> IO () loadObj interp path = do path' <- canonicalizePath path -- Note [loadObj and relative paths] interpCmd interp (LoadObj path') unloadObj :: Interp -> String -> IO () unloadObj interp path = do path' <- canonicalizePath path -- Note [loadObj and relative paths] interpCmd interp (UnloadObj path') -- Note [loadObj and relative paths] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- the iserv process might have a different current directory from the -- GHC process, so we must make paths absolute before sending them -- over. addLibrarySearchPath :: Interp -> String -> IO (Ptr ()) addLibrarySearchPath interp str = fromRemotePtr <$> interpCmd interp (AddLibrarySearchPath str) removeLibrarySearchPath :: Interp -> Ptr () -> IO Bool removeLibrarySearchPath interp p = interpCmd interp (RemoveLibrarySearchPath (toRemotePtr p)) resolveObjs :: Interp -> IO SuccessFlag resolveObjs interp = successIf <$> interpCmd interp ResolveObjs findSystemLibrary :: Interp -> String -> IO (Maybe String) findSystemLibrary interp str = interpCmd interp (FindSystemLibrary str) -- ----------------------------------------------------------------------------- -- IServ specific calls and messages -- | Spawn an external interpreter spawnIServ :: IServConfig -> IO (ExtInterpInstance ()) spawnIServ conf = do iservConfTrace conf let createProc = fromMaybe (\cp -> do { (_,_,_,ph) <- createProcess cp ; return ph }) (iservConfHook conf) (ph, rh, wh) <- runWithPipes createProc (iservConfProgram conf) [] (iservConfOpts conf) lo_ref <- newIORef Nothing let pipe = Pipe { pipeRead = rh, pipeWrite = wh, pipeLeftovers = lo_ref } let process = InterpProcess { interpHandle = ph , interpPipe = pipe } pending_frees <- newMVar [] lookup_cache <- newMVar emptyUFM let inst = ExtInterpInstance { instProcess = process , instPendingFrees = pending_frees , instLookupSymbolCache = lookup_cache , instExtra = () } pure inst -- | Stop the interpreter stopInterp :: Interp -> IO () stopInterp interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> pure () #endif ExternalInterp ext -> withExtInterpStatus ext $ \mstate -> do MC.mask $ \_restore -> modifyMVar_ mstate $ \state -> do case state of InterpPending -> pure state -- already stopped InterpRunning i -> do ex <- getProcessExitCode (interpHandle (instProcess i)) if isJust ex then pure () else sendMessage i Shutdown pure InterpPending -- ----------------------------------------------------------------------------- {- Note [External GHCi pointers] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We have the following ways to reference things in GHCi: HValue ------ HValue is a direct reference to a value in the local heap. Obviously we cannot use this to refer to things in the external process. RemoteRef --------- RemoteRef is a StablePtr to a heap-resident value. When -fexternal-interpreter or the JS interpreter is used, this value resides in the external process's heap. RemoteRefs are mostly used to send pointers in messages between GHC and iserv. A RemoteRef must be explicitly freed when no longer required, using freeHValueRefs, or by attaching a finalizer with mkForeignHValue. To get from a RemoteRef to an HValue you can use 'wormholeRef', which fails with an error message if -fexternal-interpreter is in use. ForeignRef ---------- A ForeignRef is a RemoteRef with a finalizer that will free the 'RemoteRef' when it is garbage collected. We mostly use ForeignHValue on the GHC side. The finalizer adds the RemoteRef to the iservPendingFrees list in the IServ record. The next call to interpCmd will free any RemoteRefs in the list. It was done this way rather than calling interpCmd directly, because I didn't want to have arbitrary threads calling interpCmd. In principle it would probably be ok, but it seems less hairy this way. -} -- | Creates a 'ForeignRef' that will automatically release the -- 'RemoteRef' when it is no longer referenced. mkFinalizedHValue :: Interp -> RemoteRef a -> IO (ForeignRef a) mkFinalizedHValue interp rref = do case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> mkForeignRef rref (freeRemoteRef rref) #endif ExternalInterp ext -> withExtInterpMaybe ext $ \case Nothing -> mkForeignRef rref (pure ()) -- nothing to do, interpreter already stopped Just inst -> mkForeignRef rref (freeReallyRemoteRef inst rref) freeReallyRemoteRef :: ExtInterpInstance d -> RemoteRef a -> IO () freeReallyRemoteRef inst rref = -- add to the list of HValues to free modifyMVar_ (instPendingFrees inst) (\xs -> pure (castRemoteRef rref : xs)) freeHValueRefs :: Interp -> [HValueRef] -> IO () freeHValueRefs _ [] = return () freeHValueRefs interp refs = interpCmd interp (FreeHValueRefs refs) -- | Convert a 'ForeignRef' to the value it references directly. This -- only works when the interpreter is running in the same process as -- the compiler, so it fails when @-fexternal-interpreter@ is on. wormhole :: Interp -> ForeignRef a -> IO a wormhole interp r = wormholeRef interp (unsafeForeignRefToRemoteRef r) -- | Convert an 'RemoteRef' to the value it references directly. This -- only works when the interpreter is running in the same process as -- the compiler, so it fails when @-fexternal-interpreter@ is on. wormholeRef :: Interp -> RemoteRef a -> IO a wormholeRef interp _r = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> localRef _r #endif ExternalInterp {} -> throwIO (InstallationError "this operation requires -fno-external-interpreter") -- ----------------------------------------------------------------------------- -- Misc utils fromEvalResult :: EvalResult a -> IO a fromEvalResult (EvalException e) = throwIO (fromSerializableException e) fromEvalResult (EvalSuccess a) = return a getModBreaks :: HomeModInfo -> ModBreaks getModBreaks hmi | Just linkable <- homeModInfoByteCode hmi, [cbc] <- mapMaybe onlyBCOs $ linkableUnlinked linkable = fromMaybe emptyModBreaks (bc_breaks cbc) | otherwise = emptyModBreaks -- probably object code where -- The linkable may have 'DotO's as well; only consider BCOs. See #20570. onlyBCOs :: Unlinked -> Maybe CompiledByteCode onlyBCOs (BCOs cbc _) = Just cbc onlyBCOs _ = Nothing -- | Interpreter uses Profiling way interpreterProfiled :: Interp -> Bool interpreterProfiled interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> hostIsProfiled #endif ExternalInterp ext -> case ext of ExtIServ i -> iservConfProfiled (interpConfig i) ExtJS {} -> False -- we don't support profiling yet in the JS backend -- | Interpreter uses Dynamic way interpreterDynamic :: Interp -> Bool interpreterDynamic interp = case interpInstance interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> hostIsDynamic #endif ExternalInterp ext -> case ext of ExtIServ i -> iservConfDynamic (interpConfig i) ExtJS {} -> False -- dynamic doesn't make sense for JS