{-# LANGUAGE TemplateHaskell #-} -- | Generate @generics-sop@ boilerplate instances using Template Haskell. module Generics.SOP.TH ( deriveGeneric , deriveGenericOnly , deriveGenericSubst , deriveGenericOnlySubst , deriveGenericFunctions , deriveMetadataValue , deriveMetadataType ) where import Control.Monad (replicateM) import Data.List (foldl') import Data.Maybe (fromMaybe) import Data.Proxy import Language.Haskell.TH import Language.Haskell.TH.Syntax import Generics.SOP.BasicFunctors import qualified Generics.SOP.Metadata as SOP import qualified Generics.SOP.Type.Metadata as SOP.T import Generics.SOP.NP import Generics.SOP.NS import Generics.SOP.Universe -- | Generate @generics-sop@ boilerplate for the given datatype. -- -- This function takes the name of a datatype and generates: -- -- * a 'Code' instance -- * a 'Generic' instance -- * a 'HasDatatypeInfo' instance -- -- Note that the generated code will require the @TypeFamilies@ and -- @DataKinds@ extensions to be enabled for the module. -- -- /Example:/ If you have the datatype -- -- > data Tree = Leaf Int | Node Tree Tree -- -- and say -- -- > deriveGeneric ''Tree -- -- then you get code that is equivalent to: -- -- > instance Generic Tree where -- > -- > type Code Tree = '[ '[Int], '[Tree, Tree] ] -- > -- > from (Leaf x) = SOP ( Z (I x :* Nil)) -- > from (Node l r) = SOP (S (Z (I l :* I r :* Nil))) -- > -- > to (SOP (Z (I x :* Nil))) = Leaf x -- > to (SOP (S (Z (I l :* I r :* Nil)))) = Node l r -- > to (SOP (S (S x))) = x `seq` error "inaccessible" -- > -- > instance HasDatatypeInfo Tree where -- > type DatatypeInfoOf Tree = -- > T.ADT "Main" "Tree" -- > '[ T.Constructor "Leaf", T.Constructor "Node" ] -- > -- > datatypeInfo _ = -- > T.demoteDatatypeInfo (Proxy :: Proxy (DatatypeInfoOf Tree)) -- -- /Limitations:/ Generation does not work for GADTs, for -- datatypes that involve existential quantification, for -- datatypes with unboxed fields. -- deriveGeneric :: Name -> Q [Dec] deriveGeneric n = deriveGenericSubst n varT -- | Like 'deriveGeneric', but omit the 'HasDatatypeInfo' instance. deriveGenericOnly :: Name -> Q [Dec] deriveGenericOnly n = deriveGenericOnlySubst n varT -- | Variant of 'deriveGeneric' that allows to restrict the type parameters. -- -- Experimental function, exposed primarily for benchmarking. -- deriveGenericSubst :: Name -> (Name -> Q Type) -> Q [Dec] deriveGenericSubst n f = do dec <- reifyDec n ds1 <- withDataDec dec (deriveGenericForDataDec f) ds2 <- withDataDec dec (deriveMetadataForDataDec f) return (ds1 ++ ds2) -- | Variant of 'deriveGenericOnly' that allows to restrict the type parameters. -- -- Experimental function, exposed primarily for benchmarking. -- deriveGenericOnlySubst :: Name -> (Name -> Q Type) -> Q [Dec] deriveGenericOnlySubst n f = do dec <- reifyDec n withDataDec dec (deriveGenericForDataDec f) -- | Like 'deriveGenericOnly', but don't derive class instance, only functions. -- -- /Example:/ If you say -- -- > deriveGenericFunctions ''Tree "TreeCode" "fromTree" "toTree" -- -- then you get code that is equivalent to: -- -- > type TreeCode = '[ '[Int], '[Tree, Tree] ] -- > -- > fromTree :: Tree -> SOP I TreeCode -- > fromTree (Leaf x) = SOP ( Z (I x :* Nil)) -- > fromTree (Node l r) = SOP (S (Z (I l :* I r :* Nil))) -- > -- > toTree :: SOP I TreeCode -> Tree -- > toTree (SOP (Z (I x :* Nil))) = Leaf x -- > toTree (SOP (S (Z (I l :* I r :* Nil)))) = Node l r -- > toTree (SOP (S (S x))) = x `seq` error "inaccessible" -- -- @since 0.2 -- deriveGenericFunctions :: Name -> String -> String -> String -> Q [Dec] deriveGenericFunctions n codeName fromName toName = do let codeName' = mkName codeName let fromName' = mkName fromName let toName' = mkName toName dec <- reifyDec n withDataDec dec $ \_isNewtype _cxt name bndrs cons _derivs -> do let codeType = codeFor varT cons -- '[ '[Int], '[Tree, Tree] ] let origType = appTyVars varT name bndrs -- Tree let repType = [t| SOP I $(appTyVars varT codeName' bndrs) |] -- SOP I TreeCode sequence [ tySynD codeName' bndrs codeType -- type TreeCode = '[ '[Int], '[Tree, Tree] ] , sigD fromName' [t| $origType -> $repType |] -- fromTree :: Tree -> SOP I TreeCode , embedding fromName' cons -- fromTree ... = , sigD toName' [t| $repType -> $origType |] -- toTree :: SOP I TreeCode -> Tree , projection toName' cons -- toTree ... = ] -- | Derive @DatatypeInfo@ value for the type. -- -- /Example:/ If you say -- -- > deriveMetadataValue ''Tree "TreeCode" "treeDatatypeInfo" -- -- then you get code that is equivalent to: -- -- > treeDatatypeInfo :: DatatypeInfo TreeCode -- > treeDatatypeInfo = ADT "Main" "Tree" -- > (Constructor "Leaf" :* Constructor "Node" :* Nil) -- -- /Note:/ CodeType needs to be derived with 'deriveGenericFunctions'. -- -- @since 0.2 -- deriveMetadataValue :: Name -> String -> String -> Q [Dec] deriveMetadataValue n codeName datatypeInfoName = do let codeName' = mkName codeName let datatypeInfoName' = mkName datatypeInfoName dec <- reifyDec n withDataDec dec $ \isNewtype _cxt name _bndrs cons _derivs -> do sequence [ sigD datatypeInfoName' [t| SOP.DatatypeInfo $(conT codeName') |] -- treeDatatypeInfo :: DatatypeInfo TreeCode , funD datatypeInfoName' [clause [] (normalB $ metadata' isNewtype name cons) []] -- treeDatatypeInfo = ... ] {-# DEPRECATED deriveMetadataValue "Use 'deriveMetadataType' and 'demoteDatatypeInfo' instead." #-} -- | Derive @DatatypeInfo@ type for the type. -- -- /Example:/ If you say -- -- > deriveMetadataType ''Tree "TreeDatatypeInfo" -- -- then you get code that is equivalent to: -- -- > type TreeDatatypeInfo = -- > T.ADT "Main" "Tree" -- > [ T.Constructor "Leaf", T.Constructor "Node" ] -- -- @since 0.3.0.0 -- deriveMetadataType :: Name -> String -> Q [Dec] deriveMetadataType n datatypeInfoName = do let datatypeInfoName' = mkName datatypeInfoName dec <- reifyDec n withDataDec dec $ \ isNewtype _ctx name _bndrs cons _derivs -> sequence [ tySynD datatypeInfoName' [] (metadataType' isNewtype name cons) ] deriveGenericForDataDec :: (Name -> Q Type) -> Bool -> Cxt -> Name -> [TyVarBndr] -> [Con] -> Derivings -> Q [Dec] deriveGenericForDataDec f _isNewtype _cxt name bndrs cons _derivs = do let typ = appTyVars f name bndrs deriveGenericForDataType f typ cons deriveGenericForDataType :: (Name -> Q Type) -> Q Type -> [Con] -> Q [Dec] deriveGenericForDataType f typ cons = do let codeSyn = tySynInstD ''Code $ tySynEqn [typ] (codeFor f cons) inst <- instanceD (cxt []) [t| Generic $typ |] [codeSyn, embedding 'from cons, projection 'to cons] return [inst] deriveMetadataForDataDec :: (Name -> Q Type) -> Bool -> Cxt -> Name -> [TyVarBndr] -> [Con] -> Derivings -> Q [Dec] deriveMetadataForDataDec f isNewtype _cxt name bndrs cons _derivs = do let typ = appTyVars f name bndrs deriveMetadataForDataType isNewtype name typ cons deriveMetadataForDataType :: Bool -> Name -> Q Type -> [Con] -> Q [Dec] deriveMetadataForDataType isNewtype name typ cons = do md <- instanceD (cxt []) [t| HasDatatypeInfo $typ |] [ metadataType typ isNewtype name cons , funD 'datatypeInfo [ clause [wildP] (normalB [| SOP.T.demoteDatatypeInfo (Proxy :: Proxy (DatatypeInfoOf $typ)) |]) [] ] ] -- [metadata isNewtype name cons] return [md] {------------------------------------------------------------------------------- Computing the code for a data type -------------------------------------------------------------------------------} codeFor :: (Name -> Q Type) -> [Con] -> Q Type codeFor f = promotedTypeList . map go where go :: Con -> Q Type go c = do (_, ts) <- conInfo c promotedTypeListSubst f ts {------------------------------------------------------------------------------- Computing the embedding/projection pair -------------------------------------------------------------------------------} embedding :: Name -> [Con] -> Q Dec embedding fromName = funD fromName . go' (\e -> [| Z $e |]) where go' :: (Q Exp -> Q Exp) -> [Con] -> [Q Clause] go' _ [] = (:[]) $ do x <- newName "x" clause [varP x] (normalB (caseE (varE x) [])) [] go' br cs = go br cs go :: (Q Exp -> Q Exp) -> [Con] -> [Q Clause] go _ [] = [] go br (c:cs) = mkClause br c : go (\e -> [| S $(br e) |]) cs mkClause :: (Q Exp -> Q Exp) -> Con -> Q Clause mkClause br c = do (n, ts) <- conInfo c vars <- replicateM (length ts) (newName "x") clause [conP n (map varP vars)] (normalB [| SOP $(br . npE . map (appE (conE 'I) . varE) $ vars) |]) [] projection :: Name -> [Con] -> Q Dec projection toName = funD toName . go' where go' :: [Con] -> [Q Clause] go' [] = (:[]) $ do x <- newName "x" clause [varP x] (normalB (caseE (varE x) [])) [] go' cs = go id cs go :: (Q Pat -> Q Pat) -> [Con] -> [Q Clause] go br [] = [mkUnreachableClause br] go br (c:cs) = mkClause br c : go (\p -> conP 'S [br p]) cs -- Generates a final clause of the form: -- -- to (S (... (S x))) = x `seq` error "inaccessible" -- -- An equivalent way of achieving this would be: -- -- to (S (... (S x))) = case x of {} -- -- This, however, would require clients to enable the EmptyCase extension -- in their own code, which is something which we have not previously -- required. Therefore, we do not generate this code at the moment. mkUnreachableClause :: (Q Pat -> Q Pat) -> Q Clause mkUnreachableClause br = do var <- newName "x" clause [conP 'SOP [br (varP var)]] (normalB [| $(varE var) `seq` error "inaccessible" |]) [] mkClause :: (Q Pat -> Q Pat) -> Con -> Q Clause mkClause br c = do (n, ts) <- conInfo c vars <- replicateM (length ts) (newName "x") clause [conP 'SOP [br . conP 'Z . (:[]) . npP . map (\v -> conP 'I [varP v]) $ vars]] (normalB . appsE $ conE n : map varE vars) [] {------------------------------------------------------------------------------- Compute metadata -------------------------------------------------------------------------------} metadataType :: Q Type -> Bool -> Name -> [Con] -> Q Dec metadataType typ isNewtype typeName cs = tySynInstD ''DatatypeInfoOf (tySynEqn [typ] (metadataType' isNewtype typeName cs)) -- | Derive term-level metadata. metadata' :: Bool -> Name -> [Con] -> Q Exp metadata' isNewtype typeName cs = md where md :: Q Exp md | isNewtype = [| SOP.Newtype $(stringE (nameModule' typeName)) $(stringE (nameBase typeName)) $(mdCon (head cs)) |] | otherwise = [| SOP.ADT $(stringE (nameModule' typeName)) $(stringE (nameBase typeName)) $(npE $ map mdCon cs) |] mdCon :: Con -> Q Exp mdCon (NormalC n _) = [| SOP.Constructor $(stringE (nameBase n)) |] mdCon (RecC n ts) = [| SOP.Record $(stringE (nameBase n)) $(npE (map mdField ts)) |] mdCon (InfixC _ n _) = do fixity <- reifyFixity n case fromMaybe defaultFixity fixity of Fixity f a -> [| SOP.Infix $(stringE (nameBase n)) $(mdAssociativity a) f |] mdCon (ForallC _ _ _) = fail "Existentials not supported" mdCon (GadtC _ _ _) = fail "GADTs not supported" mdCon (RecGadtC _ _ _) = fail "GADTs not supported" mdField :: VarStrictType -> Q Exp mdField (n, _, _) = [| SOP.FieldInfo $(stringE (nameBase n)) |] mdAssociativity :: FixityDirection -> Q Exp mdAssociativity InfixL = [| SOP.LeftAssociative |] mdAssociativity InfixR = [| SOP.RightAssociative |] mdAssociativity InfixN = [| SOP.NotAssociative |] -- | Derive type-level metadata. metadataType' :: Bool -> Name -> [Con] -> Q Type metadataType' isNewtype typeName cs = md where md :: Q Type md | isNewtype = [t| 'SOP.T.Newtype $(stringT (nameModule' typeName)) $(stringT (nameBase typeName)) $(mdCon (head cs)) |] | otherwise = [t| 'SOP.T.ADT $(stringT (nameModule' typeName)) $(stringT (nameBase typeName)) $(promotedTypeList $ map mdCon cs) |] mdCon :: Con -> Q Type mdCon (NormalC n _) = [t| 'SOP.T.Constructor $(stringT (nameBase n)) |] mdCon (RecC n ts) = [t| 'SOP.T.Record $(stringT (nameBase n)) $(promotedTypeList (map mdField ts)) |] mdCon (InfixC _ n _) = do fixity <- reifyFixity n case fromMaybe defaultFixity fixity of Fixity f a -> [t| 'SOP.T.Infix $(stringT (nameBase n)) $(mdAssociativity a) $(natT f) |] mdCon (ForallC _ _ _) = fail "Existentials not supported" mdCon (GadtC _ _ _) = fail "GADTs not supported" mdCon (RecGadtC _ _ _) = fail "GADTs not supported" mdField :: VarStrictType -> Q Type mdField (n, _, _) = [t| 'SOP.T.FieldInfo $(stringT (nameBase n)) |] mdAssociativity :: FixityDirection -> Q Type mdAssociativity InfixL = [t| 'SOP.T.LeftAssociative |] mdAssociativity InfixR = [t| 'SOP.T.RightAssociative |] mdAssociativity InfixN = [t| 'SOP.T.NotAssociative |] nameModule' :: Name -> String nameModule' = fromMaybe "" . nameModule {------------------------------------------------------------------------------- Constructing n-ary pairs -------------------------------------------------------------------------------} -- Given -- -- > [a, b, c] -- -- Construct -- -- > a :* b :* c :* Nil npE :: [Q Exp] -> Q Exp npE [] = [| Nil |] npE (e:es) = [| $e :* $(npE es) |] -- Like npE, but construct a pattern instead npP :: [Q Pat] -> Q Pat npP [] = conP 'Nil [] npP (p:ps) = conP '(:*) [p, npP ps] {------------------------------------------------------------------------------- Some auxiliary definitions for working with TH -------------------------------------------------------------------------------} conInfo :: Con -> Q (Name, [Q Type]) conInfo (NormalC n ts) = return (n, map (return . (\(_, t) -> t)) ts) conInfo (RecC n ts) = return (n, map (return . (\(_, _, t) -> t)) ts) conInfo (InfixC (_, t) n (_, t')) = return (n, map return [t, t']) conInfo (ForallC _ _ _) = fail "Existentials not supported" conInfo (GadtC _ _ _) = fail "GADTs not supported" conInfo (RecGadtC _ _ _) = fail "GADTs not supported" stringT :: String -> Q Type stringT = litT . strTyLit natT :: Int -> Q Type natT = litT . numTyLit . fromIntegral promotedTypeList :: [Q Type] -> Q Type promotedTypeList [] = promotedNilT promotedTypeList (t:ts) = [t| $promotedConsT $t $(promotedTypeList ts) |] promotedTypeListSubst :: (Name -> Q Type) -> [Q Type] -> Q Type promotedTypeListSubst _ [] = promotedNilT promotedTypeListSubst f (t:ts) = [t| $promotedConsT $(t >>= substType f) $(promotedTypeListSubst f ts) |] appsT :: Name -> [Q Type] -> Q Type appsT n = foldl' appT (conT n) bndrToName :: TyVarBndr -> Name bndrToName (PlainTV v ) = v bndrToName (KindedTV v _) = v appTyVars :: (Name -> Q Type) -> Name -> [TyVarBndr] -> Q Type appTyVars f n bndrs = appsT n (map (f . bndrToName) bndrs) substType :: (Name -> Q Type) -> Type -> Q Type substType f = go where go (VarT n) = f n go (AppT t1 t2) = AppT <$> go t1 <*> go t2 go ListT = return ListT go (ConT n) = return (ConT n) go ArrowT = return ArrowT go (TupleT i) = return (TupleT i) go t = return t -- error (show t) -- TODO: This is incorrect, but we only need substitution to work -- in simple cases for now. The reason is that substitution is normally -- the identity, except if we use TH derivation for the tagged datatypes -- in the benchmarking suite. So we can fall back on identity in all -- but the cases we need for the benchmarking suite. reifyDec :: Name -> Q Dec reifyDec name = do info <- reify name case info of TyConI dec -> return dec _ -> fail "Info must be type declaration type." withDataDec :: Dec -> (Bool -> Cxt -> Name -> [TyVarBndr] -> [Con] -> Derivings -> Q a) -> Q a withDataDec (DataD ctxt name bndrs _ cons derivs) f = f False ctxt name bndrs cons derivs withDataDec (NewtypeD ctxt name bndrs _ con derivs) f = f True ctxt name bndrs [con] derivs withDataDec _ _ = fail "Can only derive labels for datatypes and newtypes." -- | Utility type synonym to cover changes in the TH code #if MIN_VERSION_template_haskell(2,12,0) type Derivings = [DerivClause] #else type Derivings = Cxt #endif