module Data.Generics.Internal.Lens where
import Control.Applicative (Const(..))
import Data.Functor.Identity (Identity(..))
import Data.Monoid (First (..))
import Data.Profunctor (Choice(right'), Profunctor(dimap))
import Data.Profunctor.Unsafe ((#.), (.#))
import Data.Tagged
import GHC.Generics ((:*:)(..), (:+:)(..), Generic(..), M1(..), Rep)
type Lens' s a
= Lens s s a a
type Lens s t a b
= forall f. Functor f => (a -> f b) -> s -> f t
type Prism s t a b
= forall p f. (Choice p, Applicative f) => p a (f b) -> p s (f t)
type Prism' s a
= Prism s s a a
type Iso' s a
= forall p f. (Profunctor p, Functor f) => p a (f a) -> p s (f s)
type Iso s t a b
= forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t)
(^.) :: s -> ((a -> Const a a) -> s -> Const a s) -> a
s ^. l = getConst (l Const s)
infixl 8 ^.
set :: ((a -> Identity b) -> s -> Identity t) -> b -> s -> t
set l b
= runIdentity . l (\_ -> Identity b)
infixr 4 .~
(.~) :: ((a -> Identity b) -> s -> Identity t) -> b -> s -> t
(.~) = set
infixl 8 ^?
(^?) :: s -> ((a -> Const (First a) a) -> s -> Const (First a) s) -> Maybe a
s ^? l = getFirst (fmof l (First #. Just) s)
where fmof l' f = getConst #. l' (Const #. f)
infixr 8 #
(#) :: (Tagged b (Identity b) -> Tagged t (Identity t)) -> b -> t
(#) p = runIdentity #. unTagged #. p .# Tagged .# Identity
first :: Lens ((a :*: b) x) ((a' :*: b) x) (a x) (a' x)
first f (a :*: b)
= fmap (:*: b) (f a)
second :: Lens ((a :*: b) x) ((a :*: b') x) (b x) (b' x)
second f (a :*: b)
= fmap (a :*:) (f b)
left :: Prism ((a :+: c) x) ((b :+: c) x) (a x) (b x)
left = prism L1 $ gsum Right (Left . R1)
right :: Prism ((a :+: b) x) ((a :+: c) x) (b x) (c x)
right = prism R1 $ gsum (Left . L1) Right
gsum :: (a x -> c) -> (b x -> c) -> ((a :+: b) x) -> c
gsum f _ (L1 x) = f x
gsum _ g (R1 y) = g y
combine :: Lens' (s x) a -> Lens' (t x) a -> Lens' ((s :+: t) x) a
combine sa _ f (L1 s) = fmap (\a -> L1 (set sa a s)) (f (s ^. sa))
combine _ ta f (R1 t) = fmap (\a -> R1 (set ta a t)) (f (t ^. ta))
prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
prism bt seta = dimap seta (either pure (fmap bt)) . right'
repIso :: (Generic a, Generic b) => Iso a b (Rep a x) (Rep b x)
repIso = dimap from (fmap to)
mIso :: Iso (M1 i c f p) (M1 i c g p) (f p) (g p)
mIso = dimap unM1 (fmap M1)
mLens :: Lens (M1 i c f p) (M1 i c g p) (f p) (g p)
mLens f s = mIso f s
repLens :: (Generic a, Generic b) => Lens a b (Rep a x) (Rep b x)
repLens f s = repIso f s
sumIso :: Iso' ((a :+: b) x) (Either (a x) (b x))
sumIso = dimap f (fmap t)
where f (L1 x) = Left x
f (R1 x) = Right x
t (Left x) = L1 x
t (Right x) = R1 x
_Left :: Prism' (Either a c) a
_Left = prism Left $ either Right (Left . Right)
_Right :: Prism' (Either c a) a
_Right = prism Right $ either (Left . Left) Right
data Coyoneda f b = forall a. Coyoneda (a -> b) (f a)
instance Functor (Coyoneda f) where
fmap f (Coyoneda g fa)
= Coyoneda (f . g) fa
inj :: Functor f => Coyoneda f a -> f a
inj (Coyoneda f a) = fmap f a
proj :: Functor f => f a -> Coyoneda f a
proj fa = Coyoneda id fa
ravel :: Functor f => ((a -> Coyoneda f b) -> s -> Coyoneda f t) -> (a -> f b) -> (s -> f t)
ravel coy f s = inj $ coy (\a -> proj (f a)) s