module Data.Graph.Inductive.Internal.Heap(
Heap(..),
prettyHeap,
printPrettyHeap,
empty,unit,insert,merge,mergeAll,
isEmpty,findMin,deleteMin,splitMin,
build, toList, heapsort
) where
import Text.Show (showListWith)
#if MIN_VERSION_containers (0,4,2)
import Control.DeepSeq (NFData (..))
#endif
data Heap a b = Empty | Node a b [Heap a b]
deriving (Eq, Show, Read)
#if MIN_VERSION_containers (0,4,2)
instance (NFData a, NFData b) => NFData (Heap a b) where
rnf Empty = ()
rnf (Node a b hs) = rnf a `seq` rnf b `seq` rnf hs
#endif
prettyHeap :: (Show a, Show b) => Heap a b -> String
prettyHeap = (`showsHeap` "")
where
showsHeap Empty = id
showsHeap (Node key val []) = shows key . (": "++) . shows val
showsHeap (Node key val hs) = shows key . (": "++) . shows val
. (' ':) . showListWith showsHeap hs
printPrettyHeap :: (Show a, Show b) => Heap a b -> IO ()
printPrettyHeap = putStrLn . prettyHeap
empty :: Heap a b
empty = Empty
unit :: a -> b -> Heap a b
unit key val = Node key val []
insert :: (Ord a) => (a, b) -> Heap a b -> Heap a b
insert (key, val) = merge (unit key val)
merge :: (Ord a) => Heap a b -> Heap a b -> Heap a b
merge h Empty = h
merge Empty h = h
merge h@(Node key1 val1 hs) h'@(Node key2 val2 hs')
| key1<key2 = Node key1 val1 (h':hs)
| otherwise = Node key2 val2 (h:hs')
mergeAll:: (Ord a) => [Heap a b] -> Heap a b
mergeAll [] = Empty
mergeAll [h] = h
mergeAll (h:h':hs) = merge (merge h h') (mergeAll hs)
isEmpty :: Heap a b -> Bool
isEmpty Empty = True
isEmpty _ = False
findMin :: Heap a b -> (a, b)
findMin Empty = error "Heap.findMin: empty heap"
findMin (Node key val _) = (key, val)
deleteMin :: (Ord a) => Heap a b -> Heap a b
deleteMin Empty = Empty
deleteMin (Node _ _ hs) = mergeAll hs
splitMin :: (Ord a) => Heap a b -> (a,b,Heap a b)
splitMin Empty = error "Heap.splitMin: empty heap"
splitMin (Node key val hs) = (key,val,mergeAll hs)
build :: (Ord a) => [(a,b)] -> Heap a b
build = foldr insert Empty
toList :: (Ord a) => Heap a b -> [(a,b)]
toList Empty = []
toList h = x:toList r
where (x,r) = (findMin h,deleteMin h)
heapsort :: (Ord a) => [a] -> [a]
heapsort = map fst . toList . build . map (\x->(x,x))