fei-dataiter: mxnet dataiters

[ ai, bsd3, deprecated, library, machine-learning, program ] [ Propose Tags ]
Deprecated in favor of fei-nn

Providing the mxnet dataiters as Stream or Conduit


[Skip to Readme]

Modules

  • MXNet
    • NN
      • DataIter
        • MXNet.NN.DataIter.Conduit
        • MXNet.NN.DataIter.Streaming

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 0.2.0.0
Dependencies base (>=4.7 && <5), conduit (>=1.2 && <1.4), conduit-combinators (>=1.1.2 && <1.4), directory (>=1.3 && <1.4), fei-base, fei-nn, filepath (>=1.4 && <1.5), haskell-src-exts (>=1.20), hslogger (>=1.2), mtl, optparse-applicative (>=0.14 && <0.15), streaming (>=0.1.4.5), template-haskell (>=2.10.0.0), text (>=1.2.0 && <1.3) [details]
License BSD-3-Clause
Copyright 2018 Jiasen Wu
Author Jiasen Wu
Maintainer jiasenwu@hotmail.com
Category Machine Learning, AI
Home page https://github.com/pierric/fei-dataiter#readme
Bug tracker https://github.com/pierric/fei-dataiter/issues
Source repo head: git clone https://github.com/pierric/fei-dataiter
Uploaded by JiasenWu at 2019-09-17T16:08:07Z
Distributions
Reverse Dependencies 1 direct, 1 indirect [details]
Executables mxnet-dataiter-gen
Downloads 502 total (2 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs not available [build log]
All reported builds failed as of 2019-09-17 [all 3 reports]

Readme for fei-dataiter-0.2.0.0

[back to package description]

mxnet-dataiter

Here is an example of making a Conduit from MNIST dataset.

mnistIter (add @"image" "data/train-images-idx3-ubyte" $ 
           add @"label" "data/train-labels-idx1-ubyte" $
           add @"batch_size" 128 
           nil) :: ConduitData IO (NDArray Float, NDArray Float)

The first argument is provides named parameters for the MXNet Data Iterators. Detailed specification can be found in MXNet API 's python document.

Below is a snapshot of current support in this package.

type CSVIter_Args = 
    '[ "data_csv" := String, "data_shape" := [Int], "label_csv" := String, "label_shape" := [Int]
     , "batch_size" := Int, "round_batch" := Bool, "prefetch_buffer" := Integer, "dtype" := String] 

type MNISTIter_Args = 
    '[ "image" := String, "label" := String, "batch_size" := Int, "shuffle" := Bool, "flat" := Bool
     , "seed" := Int, "silent" := Bool, "num_parts" := Int, "part_index" := Int
     , "prefetch_buffer" := Integer, "dtype" := String]

type ImageRecordIter_Args = 
    '[ "path_imglist" := String, "path_imgrec" := String, "path_imgidx" := String, "aug_seq" := String
     , "label_width" := Int, "data_shape" := [Int], "preprocess_threads" := Int, "verbose" := Bool
     , "num_parts" := Int, "part_index" := Int, "shuffle_chunk_size" := Integer
     , "shuffle_chunk_seed" := Int, "shuffle" := Bool, "seed" := Int, "batch_size" := Int
     , "round_batch" := Bool, "prefetch_buffer" := Integer, "dtype" := String, "resize" := Int
     , "rand_crop" := Bool, "max_rotate_angle" := Int, "max_aspect_ratio" := Float
     , "max_shear_ratio" := Float, "max_crop_size" := Int, "min_crop_size" := Int
     , "max_random_scale" := Float, "min_random_scale" := Float, "max_img_size" := Float
     , "min_img_size" := Float, "random_h" := Int, "random_s" := Int, "random_l" := Int, "rotate" := Int
     , "fill_value" := Int, "inter_method" := Int, "pad" := Int, "mirror" := Bool, "rand_mirror" := Bool
     , "mean_img" := String, "mean_r" := Float, "mean_g" := Float, "mean_b" := Float, "mean_a" := Float
     , "std_r" := Float, "std_g" := Float, "std_b" := Float, "std_a" := Float, "scale" := Float
     , "max_random_contrast" := Float, "max_random_illumination" := Float]
     
type ImageDetRecordIter_Args = 
    '[ "path_imglist" := String, "path_imgrec" := String, "aug_seq" := String, "label_width" := Int
     , "data_shape" := [Int], "preprocess_threads" := Int, "verbose" := Bool, "num_parts" := Int
     , "part_index" := Int, "shuffle_chunk_size" := Integer, "shuffle_chunk_seed" := Int
     , "label_pad_width" := Int, "label_pad_value" := Float, "shuffle" := Bool, "seed" := Int
     , "batch_size" := Int, "round_batch" := Bool, "prefetch_buffer" := Integer, "dtype" := String
     , "resize" := Int, "rand_crop_prob" := Float, "min_crop_scales" := [Float]
     , "max_crop_scales" := [Float], "min_crop_aspect_ratios" := [Float]
     , "max_crop_aspect_ratios" := [Float], "min_crop_overlaps" := [Float], "max_crop_overlaps" := [Float]
     , "min_crop_sample_coverages" := [Float], "max_crop_sample_coverages" := [Float]
     , "min_crop_object_coverages" := [Float], "max_crop_object_coverages" := [Float]
     , "num_crop_sampler" := Int, "crop_emit_mode" := String, "emit_overlap_thresh" := Float
     , "max_crop_trials" := [Int], "rand_pad_prob" := Float, "max_pad_scale" := Float
     , "max_random_hue" := Int, "random_hue_prob" := Float, "max_random_saturation" := Int
     , "random_saturation_prob" := Float, "max_random_illumination" := Int
     , "random_illumination_prob" := Float, "max_random_contrast" := Float, "random_contrast_prob" := Float
     , "rand_mirror_prob" := Float, "fill_value" := Int, "inter_method" := Int, "resize_mode" := String
     , "mean_img" := String, "mean_r" := Float, "mean_g" := Float, "mean_b" := Float, "mean_a" := Float
     , "std_r" := Float, "std_g" := Float, "std_b" := Float, "std_a" := Float, "scale" := Float]

type ImageRecordUInt8Iter_Args = 
    '[ "path_imglist" := String, "path_imgrec" := String, "path_imgidx" := String, "aug_seq" := String
     , "label_width" := Int, "data_shape" := [Int], "preprocess_threads" := Int, "verbose" := Bool
     , "num_parts" := Int, "part_index" := Int, "shuffle_chunk_size" := Integer
     , "shuffle_chunk_seed" := Int, "shuffle" := Bool, "seed" := Int, "batch_size" := Int
     , "round_batch" := Bool, "prefetch_buffer" := Integer, "dtype" := String, "resize" := Int
     , "rand_crop" := Bool, "max_rotate_angle" := Int, "max_aspect_ratio" := Float
     , "max_shear_ratio" := Float, "max_crop_size" := Int, "min_crop_size" := Int
     , "max_random_scale" := Float, "min_random_scale" := Float, "max_img_size" := Float
     , "min_img_size" := Float, "random_h" := Int, "random_s" := Int, "random_l" := Int, "rotate" := Int
     , "fill_value" := Int, "inter_method" := Int, "pad" := Int]

type LibSVMIter_Args = 
    '[ "data_libsvm" := String, "data_shape" := [Int], "label_libsvm" := String, "label_shape" := [Int]
     , "num_parts" := Int, "part_index" := Int, "batch_size" := Int, "round_batch" := Bool
     , "prefetch_buffer" := Integer, "dtype" := String]