module Proof.Propositional ( type (/\), type (\/), Not, exfalso, orIntroL
, orIntroR, orElim, andIntro, andElimL
, andElimR, orAssocL, orAssocR
, andAssocL, andAssocR
) where
import Data.Void
type a /\ b = (a, b)
type a \/ b = Either a b
type Not a = a -> Void
infixr 2 \/
infixr 3 /\
exfalso :: a -> Not a -> b
exfalso a neg = absurd (neg a)
orIntroL :: a -> a \/ b
orIntroL = Left
orIntroR :: b -> a \/ b
orIntroR = Right
orElim :: a \/ b -> (a -> c) -> (b -> c) -> c
orElim aORb aTOc bTOc = either aTOc bTOc aORb
andIntro :: a -> b -> a /\ b
andIntro = (,)
andElimL :: a /\ b -> a
andElimL = fst
andElimR :: a /\ b -> b
andElimR = snd
andAssocL :: a /\ (b /\ c) -> (a /\ b) /\ c
andAssocL (a,(b,c)) = ((a,b), c)
andAssocR :: (a /\ b) /\ c -> a /\ (b /\ c)
andAssocR ((a,b),c) = (a,(b,c))
orAssocL :: a \/ (b \/ c) -> (a \/ b) \/ c
orAssocL (Left a) = Left (Left a)
orAssocL (Right (Left b)) = Left (Right b)
orAssocL (Right (Right c)) = Right c
orAssocR :: (a \/ b) \/ c -> a \/ (b \/ c)
orAssocR (Left (Left a)) = Left a
orAssocR (Left (Right b)) = Right (Left b)
orAssocR (Right c) = Right (Right c)