// duckdb_fast_float by Daniel Lemire // duckdb_fast_float by João Paulo Magalhaes // with contributions from Eugene Golushkov // with contributions from Maksim Kita // with contributions from Marcin Wojdyr // with contributions from Neal Richardson // with contributions from Tim Paine // with contributions from Fabio Pellacini // Permission is hereby granted, free of charge, to any // person obtaining a copy of this software and associated // documentation files (the "Software"), to deal in the // Software without restriction, including without // limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice // shall be included in all copies or substantial portions // of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF // ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED // TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT // SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef FASTFLOAT_FAST_FLOAT_H #define FASTFLOAT_FAST_FLOAT_H #include namespace duckdb_fast_float { enum chars_format { scientific = 1<<0, fixed = 1<<2, hex = 1<<3, general = fixed | scientific }; struct from_chars_result { const char *ptr; std::errc ec; }; /** * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. * The resulting floating-point value is the closest floating-point values (using either float or double), * using the "round to even" convention for values that would otherwise fall right in-between two values. * That is, we provide exact parsing according to the IEEE standard. * * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. * * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). * * Like the C++17 standard, the `duckdb_fast_float::from_chars` functions take an optional last argument of * the type `duckdb_fast_float::chars_format`. It is a bitset value: we check whether * `fmt & duckdb_fast_float::chars_format::fixed` and `fmt & duckdb_fast_float::chars_format::scientific` are set * to determine whether we allowe the fixed point and scientific notation respectively. * The default is `duckdb_fast_float::chars_format::general` which allows both `fixed` and `scientific`. */ template from_chars_result from_chars(const char *first, const char *last, T &value, const char decimal_separator = '.', chars_format fmt = chars_format::general) noexcept; } #endif // FASTFLOAT_FAST_FLOAT_H #ifndef FASTFLOAT_FLOAT_COMMON_H #define FASTFLOAT_FLOAT_COMMON_H #include #include #include #if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) \ || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \ || defined(__MINGW64__) \ || defined(__s390x__) \ || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) \ || defined(__EMSCRIPTEN__)) #define FASTFLOAT_64BIT #elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \ || defined(__arm__) || defined(_M_ARM) \ || defined(__MINGW32__)) #define FASTFLOAT_32BIT #else // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. // We can never tell the register width, but the SIZE_MAX is a good approximation. // UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability. #if SIZE_MAX == 0xffff #error Unknown platform (16-bit, unsupported) #elif SIZE_MAX == 0xffffffff #define FASTFLOAT_32BIT #elif SIZE_MAX == 0xffffffffffffffff #define FASTFLOAT_64BIT #else #error Unknown platform (not 32-bit, not 64-bit?) #endif #endif #if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) #include #endif #if defined(_MSC_VER) && !defined(__clang__) #define FASTFLOAT_VISUAL_STUDIO 1 #endif #ifdef _WIN32 #define FASTFLOAT_IS_BIG_ENDIAN 0 #else #if defined(__APPLE__) || defined(__FreeBSD__) #include #elif defined(sun) || defined(__sun) #include #else #include #endif # #ifndef __BYTE_ORDER__ // safe choice #define FASTFLOAT_IS_BIG_ENDIAN 0 #endif # #ifndef __ORDER_LITTLE_ENDIAN__ // safe choice #define FASTFLOAT_IS_BIG_ENDIAN 0 #endif # #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ #define FASTFLOAT_IS_BIG_ENDIAN 0 #else #define FASTFLOAT_IS_BIG_ENDIAN 1 #endif #endif #ifdef FASTFLOAT_VISUAL_STUDIO #define fastfloat_really_inline __forceinline #else #define fastfloat_really_inline inline __attribute__((always_inline)) #endif namespace duckdb_fast_float { // Compares two ASCII strings in a case insensitive manner. inline bool fastfloat_strncasecmp(const char *input1, const char *input2, size_t length) { char running_diff{0}; for (size_t i = 0; i < length; i++) { running_diff |= (input1[i] ^ input2[i]); } return (running_diff == 0) || (running_diff == 32); } #ifndef FLT_EVAL_METHOD #error "FLT_EVAL_METHOD should be defined, please include cfloat." #endif namespace { constexpr uint32_t max_digits = 768; constexpr uint32_t max_digit_without_overflow = 19; constexpr int32_t decimal_point_range = 2047; } // namespace struct value128 { uint64_t low; uint64_t high; value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} value128() : low(0), high(0) {} }; /* result might be undefined when input_num is zero */ fastfloat_really_inline int leading_zeroes(uint64_t input_num) { assert(input_num > 0); #ifdef FASTFLOAT_VISUAL_STUDIO #if defined(_M_X64) || defined(_M_ARM64) unsigned long leading_zero = 0; // Search the mask data from most significant bit (MSB) // to least significant bit (LSB) for a set bit (1). _BitScanReverse64(&leading_zero, input_num); return (int)(63 - leading_zero); #else int last_bit = 0; if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32; if(input_num & uint64_t( 0xffff0000)) input_num >>= 16, last_bit |= 16; if(input_num & uint64_t( 0xff00)) input_num >>= 8, last_bit |= 8; if(input_num & uint64_t( 0xf0)) input_num >>= 4, last_bit |= 4; if(input_num & uint64_t( 0xc)) input_num >>= 2, last_bit |= 2; if(input_num & uint64_t( 0x2)) input_num >>= 1, last_bit |= 1; return 63 - last_bit; #endif #else return __builtin_clzll(input_num); #endif } #ifdef FASTFLOAT_32BIT // slow emulation routine for 32-bit fastfloat_really_inline uint64_t emulu(uint32_t x, uint32_t y) { return x * (uint64_t)y; } // slow emulation routine for 32-bit #if !defined(__MINGW64__) fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) { uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); uint64_t adbc_carry = !!(adbc < ad); uint64_t lo = bd + (adbc << 32); *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + (adbc_carry << 32) + !!(lo < bd); return lo; } #endif // !__MINGW64__ #endif // FASTFLOAT_32BIT // compute 64-bit a*b fastfloat_really_inline value128 full_multiplication(uint64_t a, uint64_t b) { value128 answer; #ifdef _M_ARM64 // ARM64 has native support for 64-bit multiplications, no need to emulate answer.high = __umulh(a, b); answer.low = a * b; #elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__)) answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 #elif defined(FASTFLOAT_64BIT) __uint128_t r = ((__uint128_t)a) * b; answer.low = uint64_t(r); answer.high = uint64_t(r >> 64); #else #error Not implemented #endif return answer; } struct adjusted_mantissa { uint64_t mantissa{0}; int power2{0}; // a negative value indicates an invalid result adjusted_mantissa() = default; bool operator==(const adjusted_mantissa &o) const { return mantissa == o.mantissa && power2 == o.power2; } bool operator!=(const adjusted_mantissa &o) const { return mantissa != o.mantissa || power2 != o.power2; } }; struct decimal { uint32_t num_digits{0}; int32_t decimal_point{0}; bool negative{false}; bool truncated{false}; uint8_t digits[max_digits]; decimal() = default; // Copies are not allowed since this is a fat object. decimal(const decimal &) = delete; // Copies are not allowed since this is a fat object. decimal &operator=(const decimal &) = delete; // Moves are allowed: decimal(decimal &&) = default; decimal &operator=(decimal &&other) = default; }; constexpr static double powers_of_ten_double[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}; template struct binary_format { static inline constexpr int mantissa_explicit_bits(); static inline constexpr int minimum_exponent(); static inline constexpr int infinite_power(); static inline constexpr int sign_index(); static inline constexpr int min_exponent_fast_path(); static inline constexpr int max_exponent_fast_path(); static inline constexpr int max_exponent_round_to_even(); static inline constexpr int min_exponent_round_to_even(); static inline constexpr uint64_t max_mantissa_fast_path(); static inline constexpr int largest_power_of_ten(); static inline constexpr int smallest_power_of_ten(); static inline constexpr T exact_power_of_ten(int64_t power); }; template <> inline constexpr int binary_format::mantissa_explicit_bits() { return 52; } template <> inline constexpr int binary_format::mantissa_explicit_bits() { return 23; } template <> inline constexpr int binary_format::max_exponent_round_to_even() { return 23; } template <> inline constexpr int binary_format::max_exponent_round_to_even() { return 10; } template <> inline constexpr int binary_format::min_exponent_round_to_even() { return -4; } template <> inline constexpr int binary_format::min_exponent_round_to_even() { return -17; } template <> inline constexpr int binary_format::minimum_exponent() { return -1023; } template <> inline constexpr int binary_format::minimum_exponent() { return -127; } template <> inline constexpr int binary_format::infinite_power() { return 0x7FF; } template <> inline constexpr int binary_format::infinite_power() { return 0xFF; } template <> inline constexpr int binary_format::sign_index() { return 63; } template <> inline constexpr int binary_format::sign_index() { return 31; } template <> inline constexpr int binary_format::min_exponent_fast_path() { #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) return 0; #else return -22; #endif } template <> inline constexpr int binary_format::min_exponent_fast_path() { #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) return 0; #else return -10; #endif } template <> inline constexpr int binary_format::max_exponent_fast_path() { return 22; } template <> inline constexpr int binary_format::max_exponent_fast_path() { return 10; } template <> inline constexpr uint64_t binary_format::max_mantissa_fast_path() { return uint64_t(2) << mantissa_explicit_bits(); } template <> inline constexpr uint64_t binary_format::max_mantissa_fast_path() { return uint64_t(2) << mantissa_explicit_bits(); } template <> inline constexpr double binary_format::exact_power_of_ten(int64_t power) { return powers_of_ten_double[power]; } template <> inline constexpr float binary_format::exact_power_of_ten(int64_t power) { return powers_of_ten_float[power]; } template <> inline constexpr int binary_format::largest_power_of_ten() { return 308; } template <> inline constexpr int binary_format::largest_power_of_ten() { return 38; } template <> inline constexpr int binary_format::smallest_power_of_ten() { return -342; } template <> inline constexpr int binary_format::smallest_power_of_ten() { return -65; } } // namespace duckdb_fast_float // for convenience: template inline OStream& operator<<(OStream &out, const duckdb_fast_float::decimal &d) { out << "0."; for (size_t i = 0; i < d.num_digits; i++) { out << int32_t(d.digits[i]); } out << " * 10 ** " << d.decimal_point; return out; } #endif #ifndef FASTFLOAT_ASCII_NUMBER_H #define FASTFLOAT_ASCII_NUMBER_H #include #include #include #include namespace duckdb_fast_float { // Next function can be micro-optimized, but compilers are entirely // able to optimize it well. fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } fastfloat_really_inline uint64_t byteswap(uint64_t val) { return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; } fastfloat_really_inline uint64_t read_u64(const char *chars) { uint64_t val; ::memcpy(&val, chars, sizeof(uint64_t)); #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif return val; } fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif ::memcpy(chars, &val, sizeof(uint64_t)); } // credit @aqrit fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) { const uint64_t mask = 0x000000FF000000FF; const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) val -= 0x3030303030303030; val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; return uint32_t(val); } fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { return parse_eight_digits_unrolled(read_u64(chars)); } // credit @aqrit fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept { return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & 0x8080808080808080)); } fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { return is_made_of_eight_digits_fast(read_u64(chars)); } struct parsed_number_string { int64_t exponent; uint64_t mantissa; const char *lastmatch; bool negative; bool valid; bool too_many_digits; }; // Assuming that you use no more than 19 digits, this will // parse an ASCII string. fastfloat_really_inline parsed_number_string parse_number_string(const char *p, const char *pend, const char decimal_separator, chars_format fmt) noexcept { parsed_number_string answer; answer.valid = false; answer.too_many_digits = false; answer.negative = (*p == '-'); if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here ++p; if (p == pend) { return answer; } if (!is_integer(*p) && (*p != decimal_separator)) { // a sign must be followed by an integer or the dot return answer; } } const char *const start_digits = p; uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) while ((p != pend) && is_integer(*p)) { // a multiplication by 10 is cheaper than an arbitrary integer // multiplication i = 10 * i + uint64_t(*p - '0'); // might overflow, we will handle the overflow later ++p; } const char *const end_of_integer_part = p; int64_t digit_count = int64_t(end_of_integer_part - start_digits); int64_t exponent = 0; if ((p != pend) && (*p == decimal_separator)) { ++p; // Fast approach only tested under little endian systems if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; } } while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); ++p; i = i * 10 + digit; // in rare cases, this will overflow, but that's ok } exponent = end_of_integer_part + 1 - p; digit_count -= exponent; } // we must have encountered at least one integer! if (digit_count == 0) { return answer; } int64_t exp_number = 0; // explicit exponential part if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { const char * location_of_e = p; ++p; bool neg_exp = false; if ((p != pend) && ('-' == *p)) { neg_exp = true; ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++p; } if ((p == pend) || !is_integer(*p)) { if(!(fmt & chars_format::fixed)) { // We are in error. return answer; } // Otherwise, we will be ignoring the 'e'. p = location_of_e; } else { while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000) { exp_number = 10 * exp_number + digit; } ++p; } if(neg_exp) { exp_number = - exp_number; } exponent += exp_number; } } else { // If it scientific and not fixed, we have to bail out. if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } } answer.lastmatch = p; answer.valid = true; // If we frequently had to deal with long strings of digits, // we could extend our code by using a 128-bit integer instead // of a 64-bit integer. However, this is uncommon. // // We can deal with up to 19 digits. if (digit_count > 19) { // this is uncommon // It is possible that the integer had an overflow. // We have to handle the case where we have 0.0000somenumber. // We need to be mindful of the case where we only have zeroes... // E.g., 0.000000000...000. const char *start = start_digits; while ((start != pend) && (*start == '0' || *start == decimal_separator)) { if(*start == '0') { digit_count --; } start++; } if (digit_count > 19) { answer.too_many_digits = true; // Let us start again, this time, avoiding overflows. i = 0; p = start_digits; const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; while((i < minimal_nineteen_digit_integer) && (p != pend) && is_integer(*p)) { i = i * 10 + uint64_t(*p - '0'); ++p; } if (i >= minimal_nineteen_digit_integer) { // We have a big integers exponent = end_of_integer_part - p + exp_number; } else { // We have a value with a fractional component. p++; // skip the decimal_separator const char *first_after_period = p; while((i < minimal_nineteen_digit_integer) && (p != pend) && is_integer(*p)) { i = i * 10 + uint64_t(*p - '0'); ++p; } exponent = first_after_period - p + exp_number; } // We have now corrected both exponent and i, to a truncated value } } answer.exponent = exponent; answer.mantissa = i; return answer; } // This should always succeed since it follows a call to parse_number_string // This function could be optimized. In particular, we could stop after 19 digits // and try to bail out. Furthermore, we should be able to recover the computed // exponent from the pass in parse_number_string. fastfloat_really_inline decimal parse_decimal(const char *p, const char *pend, const char decimal_separator = '.') noexcept { decimal answer; answer.num_digits = 0; answer.decimal_point = 0; answer.truncated = false; answer.negative = (*p == '-'); if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here ++p; } // skip leading zeroes while ((p != pend) && (*p == '0')) { ++p; } while ((p != pend) && is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } if ((p != pend) && (*p == decimal_separator)) { ++p; const char *first_after_period = p; // if we have not yet encountered a zero, we have to skip it as well if(answer.num_digits == 0) { // skip zeros while ((p != pend) && (*p == '0')) { ++p; } } // We expect that this loop will often take the bulk of the running time // because when a value has lots of digits, these digits often while ((p + 8 <= pend) && (answer.num_digits + 8 < max_digits)) { uint64_t val = read_u64(p); if(! is_made_of_eight_digits_fast(val)) { break; } // We have eight digits, process them in one go! val -= 0x3030303030303030; write_u64(answer.digits + answer.num_digits, val); answer.num_digits += 8; p += 8; } while ((p != pend) && is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } answer.decimal_point = int32_t(first_after_period - p); } // We want num_digits to be the number of significant digits, excluding // leading *and* trailing zeros! Otherwise the truncated flag later is // going to be misleading. if(answer.num_digits > 0) { // We potentially need the answer.num_digits > 0 guard because we // prune leading zeros. So with answer.num_digits > 0, we know that // we have at least one non-zero digit. const char *preverse = p - 1; int32_t trailing_zeros = 0; while ((*preverse == '0') || (*preverse == decimal_separator)) { if(*preverse == '0') { trailing_zeros++; }; --preverse; } answer.decimal_point += int32_t(answer.num_digits); answer.num_digits -= uint32_t(trailing_zeros); } if(answer.num_digits > max_digits) { answer.truncated = true; answer.num_digits = max_digits; } if ((p != pend) && (('e' == *p) || ('E' == *p))) { ++p; bool neg_exp = false; if ((p != pend) && ('-' == *p)) { neg_exp = true; ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++p; } int32_t exp_number = 0; // exponential part while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000) { exp_number = 10 * exp_number + digit; } ++p; } answer.decimal_point += (neg_exp ? -exp_number : exp_number); } // In very rare cases, we may have fewer than 19 digits, we want to be able to reliably // assume that all digits up to max_digit_without_overflow have been initialized. for(uint32_t i = answer.num_digits; i < max_digit_without_overflow; i++) { answer.digits[i] = 0; } return answer; } } // namespace duckdb_fast_float #endif #ifndef FASTFLOAT_FAST_TABLE_H #define FASTFLOAT_FAST_TABLE_H #include namespace duckdb_fast_float { /** * When mapping numbers from decimal to binary, * we go from w * 10^q to m * 2^p but we have * 10^q = 5^q * 2^q, so effectively * we are trying to match * w * 2^q * 5^q to m * 2^p. Thus the powers of two * are not a concern since they can be represented * exactly using the binary notation, only the powers of five * affect the binary significand. */ /** * The smallest non-zero float (binary64) is 2^−1074. * We take as input numbers of the form w x 10^q where w < 2^64. * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. * However, we have that * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^−1074. * Thus it is possible for a number of the form w * 10^-342 where * w is a 64-bit value to be a non-zero floating-point number. ********* * Any number of form w * 10^309 where w>= 1 is going to be * infinite in binary64 so we never need to worry about powers * of 5 greater than 308. */ template struct powers_template { constexpr static int smallest_power_of_five = binary_format::smallest_power_of_ten(); constexpr static int largest_power_of_five = binary_format::largest_power_of_ten(); constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1); // Powers of five from 5^-342 all the way to 5^308 rounded toward one. static const uint64_t power_of_five_128[number_of_entries]; }; template const uint64_t powers_template::power_of_five_128[number_of_entries] = { 0xeef453d6923bd65a,0x113faa2906a13b3f, 0x9558b4661b6565f8,0x4ac7ca59a424c507, 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, 0xe95a99df8ace6f53,0xf4d82c2c107973dc, 0x91d8a02bb6c10594,0x79071b9b8a4be869, 0xb64ec836a47146f9,0x9748e2826cdee284, 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, 0xb208ef855c969f4f,0xbdbd2d335e51a935, 0xde8b2b66b3bc4723,0xad2c788035e61382, 0x8b16fb203055ac76,0x4c3bcb5021afcc31, 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, 0xd953e8624b85dd78,0xd71d6dad34a2af0d, 0x87d4713d6f33aa6b,0x8672648c40e5ad68, 0xa9c98d8ccb009506,0x680efdaf511f18c2, 0xd43bf0effdc0ba48,0x212bd1b2566def2, 0x84a57695fe98746d,0x14bb630f7604b57, 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, 0xcf42894a5dce35ea,0x52064cac828675b9, 0x818995ce7aa0e1b2,0x7343efebd1940993, 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, 0xca66fa129f9b60a6,0xd41a26e077774ef6, 0xfd00b897478238d0,0x8920b098955522b4, 0x9e20735e8cb16382,0x55b46e5f5d5535b0, 0xc5a890362fddbc62,0xeb2189f734aa831d, 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, 0x9a6bb0aa55653b2d,0x47b233c92125366e, 0xc1069cd4eabe89f8,0x999ec0bb696e840a, 0xf148440a256e2c76,0xc00670ea43ca250d, 0x96cd2a865764dbca,0x380406926a5e5728, 0xbc807527ed3e12bc,0xc605083704f5ecf2, 0xeba09271e88d976b,0xf7864a44c633682e, 0x93445b8731587ea3,0x7ab3ee6afbe0211d, 0xb8157268fdae9e4c,0x5960ea05bad82964, 0xe61acf033d1a45df,0x6fb92487298e33bd, 0x8fd0c16206306bab,0xa5d3b6d479f8e056, 0xb3c4f1ba87bc8696,0x8f48a4899877186c, 0xe0b62e2929aba83c,0x331acdabfe94de87, 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, 0x892731ac9faf056e,0xbe311c083a225cd2, 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, 0xd64d3d9db981787d,0x92cbbccdad5b108, 0x85f0468293f0eb4e,0x25bbf56008c58ea5, 0xa76c582338ed2621,0xaf2af2b80af6f24e, 0xd1476e2c07286faa,0x1af5af660db4aee1, 0x82cca4db847945ca,0x50d98d9fc890ed4d, 0xa37fce126597973c,0xe50ff107bab528a0, 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, 0x9faacf3df73609b1,0x77b191618c54e9ac, 0xc795830d75038c1d,0xd59df5b9ef6a2417, 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, 0x9becce62836ac577,0x4ee367f9430aec32, 0xc2e801fb244576d5,0x229c41f793cda73f, 0xf3a20279ed56d48a,0x6b43527578c1110f, 0x9845418c345644d6,0x830a13896b78aaa9, 0xbe5691ef416bd60c,0x23cc986bc656d553, 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, 0x91376c36d99995be,0x23100809b9c21fa1, 0xb58547448ffffb2d,0xabd40a0c2832a78a, 0xe2e69915b3fff9f9,0x16c90c8f323f516c, 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, 0xb1442798f49ffb4a,0x99cd11cfdf41779c, 0xdd95317f31c7fa1d,0x40405643d711d583, 0x8a7d3eef7f1cfc52,0x482835ea666b2572, 0xad1c8eab5ee43b66,0xda3243650005eecf, 0xd863b256369d4a40,0x90bed43e40076a82, 0x873e4f75e2224e68,0x5a7744a6e804a291, 0xa90de3535aaae202,0x711515d0a205cb36, 0xd3515c2831559a83,0xd5a5b44ca873e03, 0x8412d9991ed58091,0xe858790afe9486c2, 0xa5178fff668ae0b6,0x626e974dbe39a872, 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, 0xa139029f6a239f72,0x1c1fffc1ebc44e80, 0xc987434744ac874e,0xa327ffb266b56220, 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, 0xc4ce17b399107c22,0xcb550fb4384d21d3, 0xf6019da07f549b2b,0x7e2a53a146606a48, 0x99c102844f94e0fb,0x2eda7444cbfc426d, 0xc0314325637a1939,0xfa911155fefb5308, 0xf03d93eebc589f88,0x793555ab7eba27ca, 0x96267c7535b763b5,0x4bc1558b2f3458de, 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, 0xea9c227723ee8bcb,0x465e15a979c1cadc, 0x92a1958a7675175f,0xbfacd89ec191ec9, 0xb749faed14125d36,0xcef980ec671f667b, 0xe51c79a85916f484,0x82b7e12780e7401a, 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, 0xdfbdcece67006ac9,0x67a791e093e1d49a, 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, 0xaecc49914078536d,0x58fae9f773886e18, 0xda7f5bf590966848,0xaf39a475506a899e, 0x888f99797a5e012d,0x6d8406c952429603, 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, 0x855c3be0a17fcd26,0x5cf2eea09a55067f, 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, 0xd0601d8efc57b08b,0xf13b94daf124da26, 0x823c12795db6ce57,0x76c53d08d6b70858, 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, 0xfe5d54150b090b02,0xd3f93b35435d7c4c, 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, 0xc6b8e9b0709f109a,0x359ab6419ca1091b, 0xf867241c8cc6d4c0,0xc30163d203c94b62, 0x9b407691d7fc44f8,0x79e0de63425dcf1d, 0xc21094364dfb5636,0x985915fc12f542e4, 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, 0xbd8430bd08277231,0x50c6ff782a838353, 0xece53cec4a314ebd,0xa4f8bf5635246428, 0x940f4613ae5ed136,0x871b7795e136be99, 0xb913179899f68584,0x28e2557b59846e3f, 0xe757dd7ec07426e5,0x331aeada2fe589cf, 0x9096ea6f3848984f,0x3ff0d2c85def7621, 0xb4bca50b065abe63,0xfed077a756b53a9, 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, 0xb080392cc4349dec,0xbd8d794d96aacfb3, 0xdca04777f541c567,0xecf0d7a0fc5583a0, 0x89e42caaf9491b60,0xf41686c49db57244, 0xac5d37d5b79b6239,0x311c2875c522ced5, 0xd77485cb25823ac7,0x7d633293366b828b, 0x86a8d39ef77164bc,0xae5dff9c02033197, 0xa8530886b54dbdeb,0xd9f57f830283fdfc, 0xd267caa862a12d66,0xd072df63c324fd7b, 0x8380dea93da4bc60,0x4247cb9e59f71e6d, 0xa46116538d0deb78,0x52d9be85f074e608, 0xcd795be870516656,0x67902e276c921f8b, 0x806bd9714632dff6,0xba1cd8a3db53b6, 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, 0xfad2a4b13d1b5d6c,0x796b805720085f81, 0x9cc3a6eec6311a63,0xcbe3303674053bb0, 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, 0xf4f1b4d515acb93b,0xee92fb5515482d44, 0x991711052d8bf3c5,0x751bdd152d4d1c4a, 0xbf5cd54678eef0b6,0xd262d45a78a0635d, 0xef340a98172aace4,0x86fb897116c87c34, 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, 0xbae0a846d2195712,0x8974836059cca109, 0xe998d258869facd7,0x2bd1a438703fc94b, 0x91ff83775423cc06,0x7b6306a34627ddcf, 0xb67f6455292cbf08,0x1a3bc84c17b1d542, 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, 0x8e938662882af53e,0x547eb47b7282ee9c, 0xb23867fb2a35b28d,0xe99e619a4f23aa43, 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, 0xae0b158b4738705e,0x9624ab50b148d445, 0xd98ddaee19068c76,0x3badd624dd9b0957, 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, 0xd47487cc8470652b,0x7647c3200069671f, 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, 0xa5fb0a17c777cf09,0xf468107100525890, 0xcf79cc9db955c2cc,0x7182148d4066eeb4, 0x81ac1fe293d599bf,0xc6f14cd848405530, 0xa21727db38cb002f,0xb8ada00e5a506a7c, 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, 0xfd442e4688bd304a,0x908f4a166d1da663, 0x9e4a9cec15763e2e,0x9a598e4e043287fe, 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, 0xf7549530e188c128,0xd12bee59e68ef47c, 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, 0xc13a148e3032d6e7,0xe36a52363c1faf01, 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, 0xebdf661791d60f56,0x111b495b3464ad21, 0x936b9fcebb25c995,0xcab10dd900beec34, 0xb84687c269ef3bfb,0x3d5d514f40eea742, 0xe65829b3046b0afa,0xcb4a5a3112a5112, 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, 0xb3f4e093db73a093,0x59ed216765690f56, 0xe0f218b8d25088b8,0x306869c13ec3532c, 0x8c974f7383725573,0x1e414218c73a13fb, 0xafbd2350644eeacf,0xe5d1929ef90898fa, 0xdbac6c247d62a583,0xdf45f746b74abf39, 0x894bc396ce5da772,0x6b8bba8c328eb783, 0xab9eb47c81f5114f,0x66ea92f3f326564, 0xd686619ba27255a2,0xc80a537b0efefebd, 0x8613fd0145877585,0xbd06742ce95f5f36, 0xa798fc4196e952e7,0x2c48113823b73704, 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, 0x82ef85133de648c4,0x9a984d73dbe722fb, 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, 0xcc963fee10b7d1b3,0x318df905079926a8, 0xffbbcfe994e5c61f,0xfdf17746497f7052, 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, 0x9c1661a651213e2d,0x6bea10ca65c084e, 0xc31bfa0fe5698db8,0x486e494fcff30a62, 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, 0x986ddb5c6b3a76b7,0xf89629465a75e01c, 0xbe89523386091465,0xf6bbb397f1135823, 0xee2ba6c0678b597f,0x746aa07ded582e2c, 0x94db483840b717ef,0xa8c2a44eb4571cdc, 0xba121a4650e4ddeb,0x92f34d62616ce413, 0xe896a0d7e51e1566,0x77b020baf9c81d17, 0x915e2486ef32cd60,0xace1474dc1d122e, 0xb5b5ada8aaff80b8,0xd819992132456ba, 0xe3231912d5bf60e6,0x10e1fff697ed6c69, 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, 0xad4ab7112eb3929d,0x86c16c98d2c953c6, 0xd89d64d57a607744,0xe871c7bf077ba8b7, 0x87625f056c7c4a8b,0x11471cd764ad4972, 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, 0xd389b47879823479,0x4aff1d108d4ec2c3, 0x843610cb4bf160cb,0xcedf722a585139ba, 0xa54394fe1eedb8fe,0xc2974eb4ee658828, 0xce947a3da6a9273e,0x733d226229feea32, 0x811ccc668829b887,0x806357d5a3f525f, 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, 0xc9bcff6034c13052,0xfc89b393dd02f0b5, 0xfc2c3f3841f17c67,0xbbac2078d443ace2, 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, 0xc5029163f384a931,0xa9e795e65d4df11, 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, 0x99ea0196163fa42e,0x504bced1bf8e4e45, 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, 0xf07da27a82c37088,0x5d767327bb4e5a4c, 0x964e858c91ba2655,0x3a6a07f8d510f86f, 0xbbe226efb628afea,0x890489f70a55368b, 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, 0xb77ada0617e3bbcb,0x9ce6ebb40173744, 0xe55990879ddcaabd,0xcc420a6a101d0515, 0x8f57fa54c2a9eab6,0x9fa946824a12232d, 0xb32df8e9f3546564,0x47939822dc96abf9, 0xdff9772470297ebd,0x59787e2b93bc56f7, 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, 0xaefae51477a06b03,0xede622920b6b23f1, 0xdab99e59958885c4,0xe95fab368e45eced, 0x88b402f7fd75539b,0x11dbcb0218ebb414, 0xaae103b5fcd2a881,0xd652bdc29f26a119, 0xd59944a37c0752a2,0x4be76d3346f0495f, 0x857fcae62d8493a5,0x6f70a4400c562ddb, 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, 0xd097ad07a71f26b2,0x7e2000a41346a7a7, 0x825ecc24c873782f,0x8ed400668c0c28c8, 0xa2f67f2dfa90563b,0x728900802f0f32fa, 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, 0xfea126b7d78186bc,0xe2f610c84987bfa8, 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, 0xc6ede63fa05d3143,0x91503d1c79720dbb, 0xf8a95fcf88747d94,0x75a44c6397ce912a, 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, 0xc24452da229b021b,0xfbe85badce996168, 0xf2d56790ab41c2a2,0xfae27299423fb9c3, 0x97c560ba6b0919a5,0xdccd879fc967d41a, 0xbdb6b8e905cb600f,0x5400e987bbc1c920, 0xed246723473e3813,0x290123e9aab23b68, 0x9436c0760c86e30b,0xf9a0b6720aaf6521, 0xb94470938fa89bce,0xf808e40e8d5b3e69, 0xe7958cb87392c2c2,0xb60b1d1230b20e04, 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, 0xe2280b6c20dd5232,0x25c6da63c38de1b0, 0x8d590723948a535f,0x579c487e5a38ad0e, 0xb0af48ec79ace837,0x2d835a9df0c6d851, 0xdcdb1b2798182244,0xf8e431456cf88e65, 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, 0xac8b2d36eed2dac5,0xe272467e3d222f3f, 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, 0x86ccbb52ea94baea,0x98e947129fc2b4e9, 0xa87fea27a539e9a5,0x3f2398d747b36224, 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, 0x83a3eeeef9153e89,0x1953cf68300424ac, 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, 0xcdb02555653131b6,0x3792f412cb06794d, 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, 0xc8de047564d20a8b,0xf245825a5a445275, 0xfb158592be068d2e,0xeed6e2f0f0d56712, 0x9ced737bb6c4183d,0x55464dd69685606b, 0xc428d05aa4751e4c,0xaa97e14c3c26b886, 0xf53304714d9265df,0xd53dd99f4b3066a8, 0x993fe2c6d07b7fab,0xe546a8038efe4029, 0xbf8fdb78849a5f96,0xde98520472bdd033, 0xef73d256a5c0f77c,0x963e66858f6d4440, 0x95a8637627989aad,0xdde7001379a44aa8, 0xbb127c53b17ec159,0x5560c018580d5d52, 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, 0x9226712162ab070d,0xcab3961304ca70e8, 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, 0xb267ed1940f1c61c,0x55f038b237591ed3, 0xdf01e85f912e37a3,0x6b6c46dec52f6688, 0x8b61313bbabce2c6,0x2323ac4b3b3da015, 0xae397d8aa96c1b77,0xabec975e0a0d081a, 0xd9c7dced53c72255,0x96e7bd358c904a21, 0x881cea14545c7575,0x7e50d64177da2e54, 0xaa242499697392d2,0xdde50bd1d5d0b9e9, 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, 0x84ec3c97da624ab4,0xbd5af13bef0b113e, 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, 0xcfb11ead453994ba,0x67de18eda5814af2, 0x81ceb32c4b43fcf4,0x80eacf948770ced7, 0xa2425ff75e14fc31,0xa1258379a94d028d, 0xcad2f7f5359a3b3e,0x96ee45813a04330, 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, 0x9e74d1b791e07e48,0x775ea264cf55347e, 0xc612062576589dda,0x95364afe032a819e, 0xf79687aed3eec551,0x3a83ddbd83f52205, 0x9abe14cd44753b52,0xc4926a9672793543, 0xc16d9a0095928a27,0x75b7053c0f178294, 0xf1c90080baf72cb1,0x5324c68b12dd6339, 0x971da05074da7bee,0xd3f6fc16ebca5e04, 0xbce5086492111aea,0x88f4bb1ca6bcf585, 0xec1e4a7db69561a5,0x2b31e9e3d06c32e6, 0x9392ee8e921d5d07,0x3aff322e62439fd0, 0xb877aa3236a4b449,0x9befeb9fad487c3, 0xe69594bec44de15b,0x4c2ebe687989a9b4, 0x901d7cf73ab0acd9,0xf9d37014bf60a11, 0xb424dc35095cd80f,0x538484c19ef38c95, 0xe12e13424bb40e13,0x2865a5f206b06fba, 0x8cbccc096f5088cb,0xf93f87b7442e45d4, 0xafebff0bcb24aafe,0xf78f69a51539d749, 0xdbe6fecebdedd5be,0xb573440e5a884d1c, 0x89705f4136b4a597,0x31680a88f8953031, 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, 0xd6bf94d5e57a42bc,0x3d32907604691b4d, 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, 0xa7c5ac471b478423,0xfcf80dc33721d54, 0xd1b71758e219652b,0xd3c36113404ea4a9, 0x83126e978d4fdf3b,0x645a1cac083126ea, 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, 0xcccccccccccccccc,0xcccccccccccccccd, 0x8000000000000000,0x0, 0xa000000000000000,0x0, 0xc800000000000000,0x0, 0xfa00000000000000,0x0, 0x9c40000000000000,0x0, 0xc350000000000000,0x0, 0xf424000000000000,0x0, 0x9896800000000000,0x0, 0xbebc200000000000,0x0, 0xee6b280000000000,0x0, 0x9502f90000000000,0x0, 0xba43b74000000000,0x0, 0xe8d4a51000000000,0x0, 0x9184e72a00000000,0x0, 0xb5e620f480000000,0x0, 0xe35fa931a0000000,0x0, 0x8e1bc9bf04000000,0x0, 0xb1a2bc2ec5000000,0x0, 0xde0b6b3a76400000,0x0, 0x8ac7230489e80000,0x0, 0xad78ebc5ac620000,0x0, 0xd8d726b7177a8000,0x0, 0x878678326eac9000,0x0, 0xa968163f0a57b400,0x0, 0xd3c21bcecceda100,0x0, 0x84595161401484a0,0x0, 0xa56fa5b99019a5c8,0x0, 0xcecb8f27f4200f3a,0x0, 0x813f3978f8940984,0x4000000000000000, 0xa18f07d736b90be5,0x5000000000000000, 0xc9f2c9cd04674ede,0xa400000000000000, 0xfc6f7c4045812296,0x4d00000000000000, 0x9dc5ada82b70b59d,0xf020000000000000, 0xc5371912364ce305,0x6c28000000000000, 0xf684df56c3e01bc6,0xc732000000000000, 0x9a130b963a6c115c,0x3c7f400000000000, 0xc097ce7bc90715b3,0x4b9f100000000000, 0xf0bdc21abb48db20,0x1e86d40000000000, 0x96769950b50d88f4,0x1314448000000000, 0xbc143fa4e250eb31,0x17d955a000000000, 0xeb194f8e1ae525fd,0x5dcfab0800000000, 0x92efd1b8d0cf37be,0x5aa1cae500000000, 0xb7abc627050305ad,0xf14a3d9e40000000, 0xe596b7b0c643c719,0x6d9ccd05d0000000, 0x8f7e32ce7bea5c6f,0xe4820023a2000000, 0xb35dbf821ae4f38b,0xdda2802c8a800000, 0xe0352f62a19e306e,0xd50b2037ad200000, 0x8c213d9da502de45,0x4526f422cc340000, 0xaf298d050e4395d6,0x9670b12b7f410000, 0xdaf3f04651d47b4c,0x3c0cdd765f114000, 0x88d8762bf324cd0f,0xa5880a69fb6ac800, 0xab0e93b6efee0053,0x8eea0d047a457a00, 0xd5d238a4abe98068,0x72a4904598d6d880, 0x85a36366eb71f041,0x47a6da2b7f864750, 0xa70c3c40a64e6c51,0x999090b65f67d924, 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, 0x82818f1281ed449f,0xbff8f10e7a8921a4, 0xa321f2d7226895c7,0xaff72d52192b6a0d, 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, 0xfee50b7025c36a08,0x2f236d04753d5b4, 0x9f4f2726179a2245,0x1d762422c946590, 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, 0x9b934c3b330c8577,0x63cc55f49f88eb2f, 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, 0xf316271c7fc3908a,0x8bef464e3945ef7a, 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, 0xb975d6b6ee39e436,0xb3e2fd538e122b44, 0xe7d34c64a9c85d44,0x60dbbca87196b616, 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, 0xb51d13aea4a488dd,0x6babab6398bdbe41, 0xe264589a4dcdab14,0xc696963c7eed2dd1, 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, 0xb0de65388cc8ada8,0x3b25a55f43294bcb, 0xdd15fe86affad912,0x49ef0eb713f39ebe, 0x8a2dbf142dfcc7ab,0x6e3569326c784337, 0xacb92ed9397bf996,0x49c2c37f07965404, 0xd7e77a8f87daf7fb,0xdc33745ec97be906, 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, 0xd2d80db02aabd62b,0xf50a3fa490c30190, 0x83c7088e1aab65db,0x792667c6da79e0fa, 0xa4b8cab1a1563f52,0x577001b891185938, 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, 0x80b05e5ac60b6178,0x544f8158315b05b4, 0xa0dc75f1778e39d6,0x696361ae3db1c721, 0xc913936dd571c84c,0x3bc3a19cd1e38e9, 0xfb5878494ace3a5f,0x4ab48a04065c723, 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, 0xc45d1df942711d9a,0x3ba5d0bd324f8394, 0xf5746577930d6500,0xca8f44ec7ee36479, 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, 0x95d04aee3b80ece5,0xbba1f1d158724a12, 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, 0xea1575143cf97226,0xf52d09d71a3293bd, 0x924d692ca61be758,0x593c2626705f9c56, 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, 0xe498f455c38b997a,0xb6dfb9c0f956447, 0x8edf98b59a373fec,0x4724bd4189bd5eac, 0xb2977ee300c50fe7,0x58edec91ec2cb657, 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, 0x8b865b215899f46c,0xbd79e0d20082ee74, 0xae67f1e9aec07187,0xecd8590680a3aa11, 0xda01ee641a708de9,0xe80e6f4820cc9495, 0x884134fe908658b2,0x3109058d147fdcdd, 0xaa51823e34a7eede,0xbd4b46f0599fd415, 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, 0x850fadc09923329e,0x3e2cf6bc604ddb0, 0xa6539930bf6bff45,0x84db8346b786151c, 0xcfe87f7cef46ff16,0xe612641865679a63, 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, 0xa26da3999aef7749,0xe3be5e330f38f09d, 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, 0xc646d63501a1511d,0xb281e1fd541501b8, 0xf7d88bc24209a565,0x1f225a7ca91a4226, 0x9ae757596946075f,0x3375788de9b06958, 0xc1a12d2fc3978937,0x52d6b1641c83ae, 0xf209787bb47d6b84,0xc0678c5dbd23a49a, 0x9745eb4d50ce6332,0xf840b7ba963646e0, 0xbd176620a501fbff,0xb650e5a93bc3d898, 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, 0x93ba47c980e98cdf,0xc66f336c36b10137, 0xb8a8d9bbe123f017,0xb80b0047445d4184, 0xe6d3102ad96cec1d,0xa60dc059157491e5, 0x9043ea1ac7e41392,0x87c89837ad68db2f, 0xb454e4a179dd1877,0x29babe4598c311fb, 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, 0x8ce2529e2734bb1d,0x1899e4a65f58660c, 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, 0xdc21a1171d42645d,0x76707543f4fa1f73, 0x899504ae72497eba,0x6a06494a791c53a8, 0xabfa45da0edbde69,0x487db9d17636892, 0xd6f8d7509292d603,0x45a9d2845d3c42b6, 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, 0xa7f26836f282b732,0x8e6cac7768d7141e, 0xd1ef0244af2364ff,0x3207d795430cd926, 0x8335616aed761f1f,0x7f44e6bd49e807b8, 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, 0xcd036837130890a1,0x36dba887c37a8c0f, 0x802221226be55a64,0xc2494954da2c9789, 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, 0xc83553c5c8965d3d,0x6f92829494e5acc7, 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, 0x9c69a97284b578d7,0xff2a760414536efb, 0xc38413cf25e2d70d,0xfef5138519684aba, 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, 0x98bf2f79d5993802,0xef2f773ffbd97a61, 0xbeeefb584aff8603,0xaafb550ffacfd8fa, 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, 0x952ab45cfa97a0b2,0xdd945a747bf26183, 0xba756174393d88df,0x94f971119aeef9e4, 0xe912b9d1478ceb17,0x7a37cd5601aab85d, 0x91abb422ccb812ee,0xac62e055c10ab33a, 0xb616a12b7fe617aa,0x577b986b314d6009, 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, 0x8e41ade9fbebc27d,0x14588f13be847307, 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, 0x8aec23d680043bee,0x25de7bb9480d5854, 0xada72ccc20054ae9,0xaf561aa79a10ae6a, 0xd910f7ff28069da4,0x1b2ba1518094da04, 0x87aa9aff79042286,0x90fb44d2f05d0842, 0xa99541bf57452b28,0x353a1607ac744a53, 0xd3fa922f2d1675f2,0x42889b8997915ce8, 0x847c9b5d7c2e09b7,0x69956135febada11, 0xa59bc234db398c25,0x43fab9837e699095, 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, 0x8161afb94b44f57d,0x1d1be0eebac278f5, 0xa1ba1ba79e1632dc,0x6462d92a69731732, 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, 0xfcb2cb35e702af78,0x5cda735244c3d43e, 0x9defbf01b061adab,0x3a0888136afa64a7, 0xc56baec21c7a1916,0x88aaa1845b8fdd0, 0xf6c69a72a3989f5b,0x8aad549e57273d45, 0x9a3c2087a63f6399,0x36ac54e2f678864b, 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, 0x969eb7c47859e743,0x9f644ae5a4b1b325, 0xbc4665b596706114,0x873d5d9f0dde1fee, 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, 0x9316ff75dd87cbd8,0x9a7f12442d588f2, 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, 0x8fa475791a569d10,0xf96e017d694487bc, 0xb38d92d760ec4455,0x37c981dcc395a9ac, 0xe070f78d3927556a,0x85bbe253f47b1417, 0x8c469ab843b89562,0x93956d7478ccec8e, 0xaf58416654a6babb,0x387ac8d1970027b2, 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, 0x88fcf317f22241e2,0x441fece3bdf81f03, 0xab3c2fddeeaad25a,0xd527e81cad7626c3, 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, 0x85c7056562757456,0xf6872d5667844e49, 0xa738c6bebb12d16c,0xb428f8ac016561db, 0xd106f86e69d785c7,0xe13336d701beba52, 0x82a45b450226b39c,0xecc0024661173473, 0xa34d721642b06084,0x27f002d7f95d0190, 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, 0xff290242c83396ce,0x7e67047175a15271, 0x9f79a169bd203e41,0xf0062c6e984d386, 0xc75809c42c684dd1,0x52c07b78a3e60868, 0xf92e0c3537826145,0xa7709a56ccdf8a82, 0x9bbcc7a142b17ccb,0x88a66076400bb691, 0xc2abf989935ddbfe,0x6acff893d00ea435, 0xf356f7ebf83552fe,0x583f6b8c4124d43, 0x98165af37b2153de,0xc3727a337a8b704a, 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, 0xeda2ee1c7064130c,0x1162def06f79df73, 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, 0x910ab1d4db9914a0,0x1d9c9892400a22a2, 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, 0x8da471a9de737e24,0x5ceaecfed289e5d2, 0xb10d8e1456105dad,0x7425a83e872c5f47, 0xdd50f1996b947518,0xd12f124e28f77719, 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, 0xace73cbfdc0bfb7b,0x636cc64d1001550b, 0xd8210befd30efa5a,0x3c47f7e05401aa4e, 0x8714a775e3e95c78,0x65acfaec34810a71, 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, 0xd31045a8341ca07c,0x1ede48111209a050, 0x83ea2b892091e44d,0x934aed0aab460432, 0xa4e4b66b68b65d60,0xf81da84d5617853f, 0xce1de40642e3f4b9,0x36251260ab9d668e, 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, 0xa1075a24e4421730,0xb24cf65b8612f81f, 0xc94930ae1d529cfc,0xdee033f26797b627, 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, 0x9d412e0806e88aa5,0x8e1f289560ee864e, 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, 0xf5b5d7ec8acb58a2,0xae10af696774b1db, 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, 0xbff610b0cc6edd3f,0x17fd090a58d32af3, 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, 0xea53df5fd18d5513,0x84c86189216dc5ed, 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, 0xe4d5e82392a40515,0xfabaf3feaa5334a, 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, 0xb2c71d5bca9023f8,0x743e20e9ef511012, 0xdf78e4b2bd342cf6,0x914da9246b255416, 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, 0xae9672aba3d0c320,0xa184ac2473b529b1, 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, 0x8865899617fb1871,0x7e2fa67c7a658892, 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, 0xd51ea6fa85785631,0x552a74227f3ea565, 0x8533285c936b35de,0xd53a88958f87275f, 0xa67ff273b8460356,0x8a892abaf368f137, 0xd01fef10a657842c,0x2d2b7569b0432d85, 0x8213f56a67f6b29b,0x9c3b29620e29fc73, 0xa298f2c501f45f42,0x8349f3ba91b47b8f, 0xcb3f2f7642717713,0x241c70a936219a73, 0xfe0efb53d30dd4d7,0xed238cd383aa0110, 0x9ec95d1463e8a506,0xf4363804324a40aa, 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, 0xf81aa16fdc1b81da,0xdd94b7868e94050a, 0x9b10a4e5e9913128,0xca7cf2b4191c8326, 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, 0xf24a01a73cf2dccf,0xbc633b39673c8cec, 0x976e41088617ca01,0xd5be0503e085d813, 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, 0xec9c459d51852ba2,0xddf8e7d60ed1219e, 0x93e1ab8252f33b45,0xcabb90e5c942b503, 0xb8da1662e7b00a17,0x3d6a751f3b936243, 0xe7109bfba19c0c9d,0xcc512670a783ad4, 0x906a617d450187e2,0x27fb2b80668b24c5, 0xb484f9dc9641e9da,0xb1f9f660802dedf6, 0xe1a63853bbd26451,0x5e7873f8a0396973, 0x8d07e33455637eb2,0xdb0b487b6423e1e8, 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, 0xdc5c5301c56b75f7,0x7641a140cc7810fb, 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, 0xac2820d9623bf429,0x546345fa9fbdcd44, 0xd732290fbacaf133,0xa97c177947ad4095, 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, 0xa81f301449ee8c70,0x5c68f256bfff5a74, 0xd226fc195c6a2f8c,0x73832eec6fff3111, 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, 0xa0555e361951c366,0xd7e105bcc332621f, 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, 0xfa856334878fc150,0xb14f98f6f0feb951, 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, 0xc3b8358109e84f07,0xa862f80ec4700c8, 0xf4a642e14c6262c8,0xcd27bb612758c0fa, 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, 0xeeea5d5004981478,0x1858ccfce06cac74, 0x95527a5202df0ccb,0xf37801e0c43ebc8, 0xbaa718e68396cffd,0xd30560258f54e6ba, 0xe950df20247c83fd,0x47c6b82ef32a2069, 0x91d28b7416cdd27e,0x4cdc331d57fa5441, 0xb6472e511c81471d,0xe0133fe4adf8e952, 0xe3d8f9e563a198e5,0x58180fddd97723a6, 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; using powers = powers_template<>; } #endif #ifndef FASTFLOAT_DECIMAL_TO_BINARY_H #define FASTFLOAT_DECIMAL_TO_BINARY_H #include #include #include #include #include #include #include namespace duckdb_fast_float { // This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating // the result, with the "high" part corresponding to the most significant bits and the // low part corresponding to the least significant bits. // template fastfloat_really_inline value128 compute_product_approximation(int64_t q, uint64_t w) { const int index = 2 * int(q - powers::smallest_power_of_five); // For small values of q, e.g., q in [0,27], the answer is always exact because // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); // gives the exact answer. value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]); static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); constexpr uint64_t precision_mask = (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) : uint64_t(0xFFFFFFFFFFFFFFFF); if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]); firstproduct.low += secondproduct.high; if(secondproduct.high > firstproduct.low) { firstproduct.high++; } } return firstproduct; } namespace detail { /** * For q in (0,350), we have that * f = (((152170 + 65536) * q ) >> 16); * is equal to * floor(p) + q * where * p = log(5**q)/log(2) = q * log(5)/log(2) * * For negative values of q in (-400,0), we have that * f = (((152170 + 65536) * q ) >> 16); * is equal to * -ceil(p) + q * where * p = log(5**-q)/log(2) = -q * log(5)/log(2) */ fastfloat_really_inline int power(int q) noexcept { return (((152170 + 65536) * q) >> 16) + 63; } } // namespace detail // w * 10 ** q // The returned value should be a valid ieee64 number that simply need to be packed. // However, in some very rare cases, the computation will fail. In such cases, we // return an adjusted_mantissa with a negative power of 2: the caller should recompute // in such cases. template fastfloat_really_inline adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { adjusted_mantissa answer; if ((w == 0) || (q < binary::smallest_power_of_ten())) { answer.power2 = 0; answer.mantissa = 0; // result should be zero return answer; } if (q > binary::largest_power_of_ten()) { // we want to get infinity: answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five]. // We want the most significant bit of i to be 1. Shift if needed. int lz = leading_zeroes(w); w <<= lz; // The required precision is binary::mantissa_explicit_bits() + 3 because // 1. We need the implicit bit // 2. We need an extra bit for rounding purposes // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) value128 product = compute_product_approximation(q, w); if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further // In some very rare cases, this could happen, in which case we might need a more accurate // computation that what we can provide cheaply. This is very, very unlikely. // const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0, // and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation. if(!inside_safe_exponent) { answer.power2 = -1; // This (a negative value) indicates an error condition. return answer; } } // The "compute_product_approximation" function can be slightly slower than a branchless approach: // value128 product = compute_product(q, w); // but in practice, we can win big with the compute_product_approximation if its additional branch // is easily predicted. Which is best is data specific. int upperbit = int(product.high >> 63); answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); answer.power2 = int(detail::power(int(q)) + upperbit - lz - binary::minimum_exponent()); if (answer.power2 <= 0) { // we have a subnormal? // Here have that answer.power2 <= 0 so -answer.power2 >= 0 if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. answer.power2 = 0; answer.mantissa = 0; // result should be zero return answer; } // next line is safe because -answer.power2 + 1 < 64 answer.mantissa >>= -answer.power2 + 1; // Thankfully, we can't have both "round-to-even" and subnormals because // "round-to-even" only occurs for powers close to 0. answer.mantissa += (answer.mantissa & 1); // round up answer.mantissa >>= 1; // There is a weird scenario where we don't have a subnormal but just. // Suppose we start with 2.2250738585072013e-308, we end up // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer // subnormal, but we can only know this after rounding. // So we only declare a subnormal if we are smaller than the threshold. answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; return answer; } // usually, we round *up*, but if we fall right in between and and we have an // even basis, we need to round down // We are only concerned with the cases where 5**q fits in single 64-bit word. if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! // To be in-between two floats we need that in doing // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); // ... we dropped out only zeroes. But if this happened, then we can go back!!! if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up } } answer.mantissa += (answer.mantissa & 1); // round up answer.mantissa >>= 1; if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); answer.power2++; // undo previous addition } answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); if (answer.power2 >= binary::infinite_power()) { // infinity answer.power2 = binary::infinite_power(); answer.mantissa = 0; } return answer; } } // namespace duckdb_fast_float #endif #ifndef FASTFLOAT_ASCII_NUMBER_H #define FASTFLOAT_ASCII_NUMBER_H #include #include #include #include namespace duckdb_fast_float { // Next function can be micro-optimized, but compilers are entirely // able to optimize it well. fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } fastfloat_really_inline uint64_t byteswap(uint64_t val) { return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; } fastfloat_really_inline uint64_t read_u64(const char *chars) { uint64_t val; ::memcpy(&val, chars, sizeof(uint64_t)); #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif return val; } fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif ::memcpy(chars, &val, sizeof(uint64_t)); } // credit @aqrit fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) { const uint64_t mask = 0x000000FF000000FF; const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) val -= 0x3030303030303030; val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; return uint32_t(val); } fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { return parse_eight_digits_unrolled(read_u64(chars)); } // credit @aqrit fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept { return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & 0x8080808080808080)); } fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { return is_made_of_eight_digits_fast(read_u64(chars)); } struct parsed_number_string { int64_t exponent; uint64_t mantissa; const char *lastmatch; bool negative; bool valid; bool too_many_digits; }; // Assuming that you use no more than 19 digits, this will // parse an ASCII string. fastfloat_really_inline parsed_number_string parse_number_string(const char *p, const char *pend, const char decimal_separator, chars_format fmt) noexcept { parsed_number_string answer; answer.valid = false; answer.too_many_digits = false; answer.negative = (*p == '-'); if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here ++p; if (p == pend) { return answer; } if (!is_integer(*p) && (*p != decimal_separator)) { // a sign must be followed by an integer or the dot return answer; } } const char *const start_digits = p; uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) while ((p != pend) && is_integer(*p)) { // a multiplication by 10 is cheaper than an arbitrary integer // multiplication i = 10 * i + uint64_t(*p - '0'); // might overflow, we will handle the overflow later ++p; } const char *const end_of_integer_part = p; int64_t digit_count = int64_t(end_of_integer_part - start_digits); int64_t exponent = 0; if ((p != pend) && (*p == decimal_separator)) { ++p; // Fast approach only tested under little endian systems if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; } } while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); ++p; i = i * 10 + digit; // in rare cases, this will overflow, but that's ok } exponent = end_of_integer_part + 1 - p; digit_count -= exponent; } // we must have encountered at least one integer! if (digit_count == 0) { return answer; } int64_t exp_number = 0; // explicit exponential part if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { const char * location_of_e = p; ++p; bool neg_exp = false; if ((p != pend) && ('-' == *p)) { neg_exp = true; ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++p; } if ((p == pend) || !is_integer(*p)) { if(!(fmt & chars_format::fixed)) { // We are in error. return answer; } // Otherwise, we will be ignoring the 'e'. p = location_of_e; } else { while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000) { exp_number = 10 * exp_number + digit; } ++p; } if(neg_exp) { exp_number = - exp_number; } exponent += exp_number; } } else { // If it scientific and not fixed, we have to bail out. if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } } answer.lastmatch = p; answer.valid = true; // If we frequently had to deal with long strings of digits, // we could extend our code by using a 128-bit integer instead // of a 64-bit integer. However, this is uncommon. // // We can deal with up to 19 digits. if (digit_count > 19) { // this is uncommon // It is possible that the integer had an overflow. // We have to handle the case where we have 0.0000somenumber. // We need to be mindful of the case where we only have zeroes... // E.g., 0.000000000...000. const char *start = start_digits; while ((start != pend) && (*start == '0' || *start == decimal_separator)) { if(*start == '0') { digit_count --; } start++; } if (digit_count > 19) { answer.too_many_digits = true; // Let us start again, this time, avoiding overflows. i = 0; p = start_digits; const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; while((i < minimal_nineteen_digit_integer) && (p != pend) && is_integer(*p)) { i = i * 10 + uint64_t(*p - '0'); ++p; } if (i >= minimal_nineteen_digit_integer) { // We have a big integers exponent = end_of_integer_part - p + exp_number; } else { // We have a value with a fractional component. p++; // skip the decimal_separator const char *first_after_period = p; while((i < minimal_nineteen_digit_integer) && (p != pend) && is_integer(*p)) { i = i * 10 + uint64_t(*p - '0'); ++p; } exponent = first_after_period - p + exp_number; } // We have now corrected both exponent and i, to a truncated value } } answer.exponent = exponent; answer.mantissa = i; return answer; } // This should always succeed since it follows a call to parse_number_string // This function could be optimized. In particular, we could stop after 19 digits // and try to bail out. Furthermore, we should be able to recover the computed // exponent from the pass in parse_number_string. fastfloat_really_inline decimal parse_decimal(const char *p, const char *pend, const char decimal_separator) noexcept { decimal answer; answer.num_digits = 0; answer.decimal_point = 0; answer.truncated = false; answer.negative = (*p == '-'); if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here ++p; } // skip leading zeroes while ((p != pend) && (*p == '0')) { ++p; } while ((p != pend) && is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } if ((p != pend) && (*p == decimal_separator)) { ++p; const char *first_after_period = p; // if we have not yet encountered a zero, we have to skip it as well if(answer.num_digits == 0) { // skip zeros while ((p != pend) && (*p == '0')) { ++p; } } // We expect that this loop will often take the bulk of the running time // because when a value has lots of digits, these digits often while ((p + 8 <= pend) && (answer.num_digits + 8 < max_digits)) { uint64_t val = read_u64(p); if(! is_made_of_eight_digits_fast(val)) { break; } // We have eight digits, process them in one go! val -= 0x3030303030303030; write_u64(answer.digits + answer.num_digits, val); answer.num_digits += 8; p += 8; } while ((p != pend) && is_integer(*p)) { if (answer.num_digits < max_digits) { answer.digits[answer.num_digits] = uint8_t(*p - '0'); } answer.num_digits++; ++p; } answer.decimal_point = int32_t(first_after_period - p); } // We want num_digits to be the number of significant digits, excluding // leading *and* trailing zeros! Otherwise the truncated flag later is // going to be misleading. if(answer.num_digits > 0) { // We potentially need the answer.num_digits > 0 guard because we // prune leading zeros. So with answer.num_digits > 0, we know that // we have at least one non-zero digit. const char *preverse = p - 1; int32_t trailing_zeros = 0; while ((*preverse == '0') || (*preverse == decimal_separator)) { if(*preverse == '0') { trailing_zeros++; }; --preverse; } answer.decimal_point += int32_t(answer.num_digits); answer.num_digits -= uint32_t(trailing_zeros); } if(answer.num_digits > max_digits) { answer.truncated = true; answer.num_digits = max_digits; } if ((p != pend) && (('e' == *p) || ('E' == *p))) { ++p; bool neg_exp = false; if ((p != pend) && ('-' == *p)) { neg_exp = true; ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++p; } int32_t exp_number = 0; // exponential part while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000) { exp_number = 10 * exp_number + digit; } ++p; } answer.decimal_point += (neg_exp ? -exp_number : exp_number); } // In very rare cases, we may have fewer than 19 digits, we want to be able to reliably // assume that all digits up to max_digit_without_overflow have been initialized. for(uint32_t i = answer.num_digits; i < max_digit_without_overflow; i++) { answer.digits[i] = 0; } return answer; } } // namespace duckdb_fast_float #endif #ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H #define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H /** * This code is meant to handle the case where we have more than 19 digits. * * It is based on work by Nigel Tao (at https://github.com/google/wuffs/) * who credits Ken Thompson for the design (via a reference to the Go source * code). * * Rob Pike suggested that this algorithm be called "Simple Decimal Conversion". * * It is probably not very fast but it is a fallback that should almost never * be used in real life. Though it is not fast, it is "easily" understood and debugged. **/ #include namespace duckdb_fast_float { namespace detail { // remove all final zeroes inline void trim(decimal &h) { while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { h.num_digits--; } } inline uint32_t number_of_digits_decimal_left_shift(const decimal &h, uint32_t shift) { shift &= 63; const static uint16_t number_of_digits_decimal_left_shift_table[65] = { 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, 0x051C, 0x051C, }; uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; uint32_t num_new_digits = x_a >> 11; uint32_t pow5_a = 0x7FF & x_a; uint32_t pow5_b = 0x7FF & x_b; const static uint8_t number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, }; const uint8_t *pow5 = &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; uint32_t i = 0; uint32_t n = pow5_b - pow5_a; for (; i < n; i++) { if (i >= h.num_digits) { return num_new_digits - 1; } else if (h.digits[i] == pow5[i]) { continue; } else if (h.digits[i] < pow5[i]) { return num_new_digits - 1; } else { return num_new_digits; } } return num_new_digits; } inline uint64_t round(decimal &h) { if ((h.num_digits == 0) || (h.decimal_point < 0)) { return 0; } else if (h.decimal_point > 18) { return UINT64_MAX; } // at this point, we know that h.decimal_point >= 0 uint32_t dp = uint32_t(h.decimal_point); uint64_t n = 0; for (uint32_t i = 0; i < dp; i++) { n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); } bool round_up = false; if (dp < h.num_digits) { round_up = h.digits[dp] >= 5; // normally, we round up // but we may need to round to even! if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); } } if (round_up) { n++; } return n; } // computes h * 2^-shift inline void decimal_left_shift(decimal &h, uint32_t shift) { if (h.num_digits == 0) { return; } uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); int32_t read_index = int32_t(h.num_digits - 1); uint32_t write_index = h.num_digits - 1 + num_new_digits; uint64_t n = 0; while (read_index >= 0) { n += uint64_t(h.digits[read_index]) << shift; uint64_t quotient = n / 10; uint64_t remainder = n - (10 * quotient); if (write_index < max_digits) { h.digits[write_index] = uint8_t(remainder); } else if (remainder > 0) { h.truncated = true; } n = quotient; write_index--; read_index--; } while (n > 0) { uint64_t quotient = n / 10; uint64_t remainder = n - (10 * quotient); if (write_index < max_digits) { h.digits[write_index] = uint8_t(remainder); } else if (remainder > 0) { h.truncated = true; } n = quotient; write_index--; } h.num_digits += num_new_digits; if (h.num_digits > max_digits) { h.num_digits = max_digits; } h.decimal_point += int32_t(num_new_digits); trim(h); } // computes h * 2^shift inline void decimal_right_shift(decimal &h, uint32_t shift) { uint32_t read_index = 0; uint32_t write_index = 0; uint64_t n = 0; while ((n >> shift) == 0) { if (read_index < h.num_digits) { n = (10 * n) + h.digits[read_index++]; } else if (n == 0) { return; } else { while ((n >> shift) == 0) { n = 10 * n; read_index++; } break; } } h.decimal_point -= int32_t(read_index - 1); if (h.decimal_point < -decimal_point_range) { // it is zero h.num_digits = 0; h.decimal_point = 0; h.negative = false; h.truncated = false; return; } uint64_t mask = (uint64_t(1) << shift) - 1; while (read_index < h.num_digits) { uint8_t new_digit = uint8_t(n >> shift); n = (10 * (n & mask)) + h.digits[read_index++]; h.digits[write_index++] = new_digit; } while (n > 0) { uint8_t new_digit = uint8_t(n >> shift); n = 10 * (n & mask); if (write_index < max_digits) { h.digits[write_index++] = new_digit; } else if (new_digit > 0) { h.truncated = true; } } h.num_digits = write_index; trim(h); } } // namespace detail template adjusted_mantissa compute_float(decimal &d) { adjusted_mantissa answer; if (d.num_digits == 0) { // should be zero answer.power2 = 0; answer.mantissa = 0; return answer; } // At this point, going further, we can assume that d.num_digits > 0. // // We want to guard against excessive decimal point values because // they can result in long running times. Indeed, we do // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not // fine (runs for a long time). // if(d.decimal_point < -324) { // We have something smaller than 1e-324 which is always zero // in binary64 and binary32. // It should be zero. answer.power2 = 0; answer.mantissa = 0; return answer; } else if(d.decimal_point >= 310) { // We have something at least as large as 0.1e310 which is // always infinite. answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } static const uint32_t max_shift = 60; static const uint32_t num_powers = 19; static const uint8_t decimal_powers[19] = { 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // 33, 36, 39, 43, 46, 49, 53, 56, 59, // }; int32_t exp2 = 0; while (d.decimal_point > 0) { uint32_t n = uint32_t(d.decimal_point); uint32_t shift = (n < num_powers) ? decimal_powers[n] : max_shift; detail::decimal_right_shift(d, shift); if (d.decimal_point < -decimal_point_range) { // should be zero answer.power2 = 0; answer.mantissa = 0; return answer; } exp2 += int32_t(shift); } // We shift left toward [1/2 ... 1]. while (d.decimal_point <= 0) { uint32_t shift; if (d.decimal_point == 0) { if (d.digits[0] >= 5) { break; } shift = (d.digits[0] < 2) ? 2 : 1; } else { uint32_t n = uint32_t(-d.decimal_point); shift = (n < num_powers) ? decimal_powers[n] : max_shift; } detail::decimal_left_shift(d, shift); if (d.decimal_point > decimal_point_range) { // we want to get infinity: answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } exp2 -= int32_t(shift); } // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. exp2--; constexpr int32_t minimum_exponent = binary::minimum_exponent(); while ((minimum_exponent + 1) > exp2) { uint32_t n = uint32_t((minimum_exponent + 1) - exp2); if (n > max_shift) { n = max_shift; } detail::decimal_right_shift(d, n); exp2 += int32_t(n); } if ((exp2 - minimum_exponent) >= binary::infinite_power()) { answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; detail::decimal_left_shift(d, mantissa_size_in_bits); uint64_t mantissa = detail::round(d); // It is possible that we have an overflow, in which case we need // to shift back. if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { detail::decimal_right_shift(d, 1); exp2 += 1; mantissa = detail::round(d); if ((exp2 - minimum_exponent) >= binary::infinite_power()) { answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } } answer.power2 = exp2 - binary::minimum_exponent(); if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; } answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); return answer; } template adjusted_mantissa parse_long_mantissa(const char *first, const char* last) { decimal d = parse_decimal(first, last); return compute_float(d); } } // namespace duckdb_fast_float #endif #ifndef FASTFLOAT_PARSE_NUMBER_H #define FASTFLOAT_PARSE_NUMBER_H #include #include #include #include #include namespace duckdb_fast_float { namespace detail { /** * Special case +inf, -inf, nan, infinity, -infinity. * The case comparisons could be made much faster given that we know that the * strings a null-free and fixed. **/ template from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept { from_chars_result answer; answer.ptr = first; answer.ec = std::errc(); // be optimistic bool minusSign = false; if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here minusSign = true; ++first; } if (last - first >= 3) { if (fastfloat_strncasecmp(first, "nan", 3)) { answer.ptr = (first += 3); value = minusSign ? -std::numeric_limits::quiet_NaN() : std::numeric_limits::quiet_NaN(); // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). if(first != last && *first == '(') { for(const char* ptr = first + 1; ptr != last; ++ptr) { if (*ptr == ')') { answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) break; } else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_')) break; // forbidden char, not nan(n-char-seq-opt) } } return answer; } if (fastfloat_strncasecmp(first, "inf", 3)) { if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) { answer.ptr = first + 8; } else { answer.ptr = first + 3; } value = minusSign ? -std::numeric_limits::infinity() : std::numeric_limits::infinity(); return answer; } } answer.ec = std::errc::invalid_argument; return answer; } template fastfloat_really_inline void to_float(bool negative, adjusted_mantissa am, T &value) { uint64_t word = am.mantissa; word |= uint64_t(am.power2) << binary_format::mantissa_explicit_bits(); word = negative ? word | (uint64_t(1) << binary_format::sign_index()) : word; #if FASTFLOAT_IS_BIG_ENDIAN == 1 if (std::is_same::value) { ::memcpy(&value, (char *)&word + 4, sizeof(T)); // extract value at offset 4-7 if float on big-endian } else { ::memcpy(&value, &word, sizeof(T)); } #else // For little-endian systems: ::memcpy(&value, &word, sizeof(T)); #endif } } // namespace detail template from_chars_result from_chars(const char *first, const char *last, T &value, const char decimal_separator, chars_format fmt /*= chars_format::general*/) noexcept { static_assert (std::is_same::value || std::is_same::value, "only float and double are supported"); from_chars_result answer; if (first == last) { answer.ec = std::errc::invalid_argument; answer.ptr = first; return answer; } parsed_number_string pns = parse_number_string(first, last, decimal_separator, fmt); if (!pns.valid) { return detail::parse_infnan(first, last, value); } answer.ec = std::errc(); // be optimistic answer.ptr = pns.lastmatch; // Next is Clinger's fast path. if (binary_format::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format::max_exponent_fast_path() && pns.mantissa <=binary_format::max_mantissa_fast_path() && !pns.too_many_digits) { value = T(pns.mantissa); if (pns.exponent < 0) { value = value / binary_format::exact_power_of_ten(-pns.exponent); } else { value = value * binary_format::exact_power_of_ten(pns.exponent); } if (pns.negative) { value = -value; } return answer; } adjusted_mantissa am = compute_float>(pns.exponent, pns.mantissa); if(pns.too_many_digits) { if(am != compute_float>(pns.exponent, pns.mantissa + 1)) { am.power2 = -1; // value is invalid. } } // If we called compute_float>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0), // then we need to go the long way around again. This is very uncommon. if(am.power2 < 0) { am = parse_long_mantissa>(first,last); } detail::to_float(pns.negative, am, value); return answer; } } // namespace duckdb_fast_float #endif