module DSP.Filter.Analog.Transform (
a_lp2lp, a_lp2hp, a_lp2bp, a_lp2bs,
substitute, propSubstituteRecip, propSubstituteAlt,
) where
import Polynomial.Basic
normalize :: ([Double],[Double]) -> ([Double],[Double])
normalize (num,den) = (num',den')
where a0 = last den
num' = map (/ a0) num
den' = map (/ a0) den
a_lp2lp :: Double
-> ([Double],[Double])
-> ([Double],[Double])
a_lp2lp wu (num,den) = normalize (num',den')
where num' = polysubst [ 0, 1/wu ] num
den' = polysubst [ 0, 1/wu ] den
a_lp2hp :: Double
-> ([Double],[Double])
-> ([Double],[Double])
a_lp2hp wu (num,den) = normalize (num',den')
where nn = length num
nd = length den
n = max nn nd
num' = polysubst [ 0, 1/wu ] $ reverse $ num ++ replicate (nnn) 0
den' = polysubst [ 0, 1/wu ] $ reverse $ den ++ replicate (nnd) 0
a_lp2bp :: Double
-> Double
-> ([Double],[Double])
-> ([Double],[Double])
a_lp2bp wl wu = substitute ([ wl*wu, 0, 1 ], [ 0, wuwl ])
a_lp2bs :: Double
-> Double
-> ([Double],[Double])
-> ([Double],[Double])
a_lp2bs wl wu = substitute ([ 0, wuwl ], [ wu*wl, 0, 1 ])
substitute ::
([Double],[Double]) -> ([Double],[Double]) -> ([Double],[Double])
substitute (nsub,dsub) (num,den) = normalize (num',den')
where num' = polyPolySubst nsub $ weightedPowers $ num
den' = polyPolySubst nsub $ weightedPowers $ den
weightedPowers = flip (zipWith polyscale) dsubPowers
dsubPowers = reverse $ take m $ iterate (polymult dsub) [1]
m = max (length num) (length den)
substituteAlt ::
([Double],[Double]) -> ([Double],[Double]) -> ([Double],[Double])
substituteAlt (nsub,dsub) (num,den) = normalize (num',den')
where m = max (length num 1) (length den 1)
num' = step3 $ step2 (0::Int) $ step1 m $ num
den' = step3 $ step2 (0::Int) $ step1 m $ den
step1 _ [] = []
step1 n (x:xs) = map (x*) (polypow dsub n) : step1 (n1) xs
step2 _ [] = []
step2 n (x:xs) = polymult (polypow nsub n) x : step2 (n+1) xs
step3 x = foldr polyadd [0] x
propSubstituteRecip :: ([Double],[Double]) -> ([Double],[Double]) -> Bool
propSubstituteRecip (nsub,dsub) (num,den) =
let (x,y) = substitute (nsub,dsub) (num,den)
in (y,x) == substitute (dsub,nsub) (den,num)
propSubstituteAlt :: ([Double],[Double]) -> ([Double],[Double]) -> Bool
propSubstituteAlt q p = substitute q p == substituteAlt q p