{-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE StandaloneDeriving #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.Core.Trace -- Copyright : (c) 2012 diagrams-core team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- "Diagrams" defines the core library of primitives -- forming the basis of an embedded domain-specific language for -- describing and rendering diagrams. -- -- The @Trace@ module defines a data type and type class for -- \"traces\", aka functional boundaries, essentially corresponding to -- embedding a raytracer with each diagram. -- ----------------------------------------------------------------------------- module Diagrams.Core.Trace ( -- * Traces Trace(..) , inTrace , mkTrace -- * Traced class , Traced(..) -- * Computing with traces , traceV, traceP , maxTraceV, maxTraceP ) where import Control.Applicative import qualified Data.Map as M import Data.Semigroup import qualified Data.Set as S import Data.AffineSpace import Data.Monoid.PosInf import Data.VectorSpace import Diagrams.Core.HasOrigin import Diagrams.Core.Points import Diagrams.Core.Transform import Diagrams.Core.V ------------------------------------------------------------ -- Trace ------------------------------------------------- ------------------------------------------------------------ -- | Every diagram comes equipped with a *trace*. Intuitively, the -- trace for a diagram is like a raytracer: given a line -- (represented as a base point + direction), the trace computes the -- distance from the base point along the line to the first -- intersection with the diagram. The distance can be negative if -- the intersection is in the opposite direction from the base -- point, or infinite if the ray never intersects the diagram. -- Note: to obtain the distance to the *furthest* intersection -- instead of the *closest*, just negate the direction vector and -- then negate the result. -- -- Note that the output should actually be interpreted not as an -- absolute distance, but as a multiplier relative to the input -- vector. That is, if the input vector is @v@ and the returned -- scalar is @s@, the distance from the base point to the -- intersection is given by @s *^ magnitude v@. newtype Trace v = Trace { appTrace :: Point v -> v -> PosInf (Scalar v) } inTrace :: ((Point v -> v -> PosInf (Scalar v)) -> (Point v -> v -> PosInf (Scalar v))) -> Trace v -> Trace v inTrace f = Trace . f . appTrace mkTrace :: (Point v -> v -> PosInf (Scalar v)) -> Trace v mkTrace = Trace -- | Traces form a semigroup with pointwise minimum as composition. -- Hence, if @t1@ is the trace for diagram @d1@, and -- @e2@ is the trace for @d2@, then @e1 \`mappend\` e2@ -- is the trace for @d1 \`atop\` d2@. deriving instance Ord (Scalar v) => Semigroup (Trace v) -- | The identity for the 'Monoid' instance is the constantly infinite -- trace. deriving instance Ord (Scalar v) => Monoid (Trace v) type instance V (Trace v) = v instance (VectorSpace v) => HasOrigin (Trace v) where moveOriginTo (P u) = inTrace $ \f p -> f (p .+^ u) instance Show (Trace v) where show _ = "<trace>" ------------------------------------------------------------ -- Transforming traces ----------------------------------- ------------------------------------------------------------ instance HasLinearMap v => Transformable (Trace v) where transform t = inTrace $ \f p v -> f (papply (inv t) p) (apply (inv t) v) ------------------------------------------------------------ -- Traced class ------------------------------------------ ------------------------------------------------------------ -- | @Traced@ abstracts over things which have a trace. class (Ord (Scalar (V a)), VectorSpace (V a)) => Traced a where -- | Compute the trace of an object. getTrace :: a -> Trace (V a) instance (Ord (Scalar v), VectorSpace v) => Traced (Trace v) where getTrace = id -- | The trace of a single point is the empty trace, /i.e./ the one -- which returns positive infinity for every query. Arguably it -- should return a finite distance for vectors aimed directly at the -- given point and infinity for everything else, but due to -- floating-point inaccuracy this is problematic. Note that the -- envelope for a single point is *not* the empty envelope (see -- "Diagrams.Core.Envelope"). instance (Ord (Scalar v), VectorSpace v) => Traced (Point v) where getTrace p = mempty instance (Traced a, Traced b, V a ~ V b) => Traced (a,b) where getTrace (x,y) = getTrace x <> getTrace y instance (Traced b) => Traced [b] where getTrace = mconcat . map getTrace instance (Traced b) => Traced (M.Map k b) where getTrace = mconcat . map getTrace . M.elems instance (Traced b) => Traced (S.Set b) where getTrace = mconcat . map getTrace . S.elems ------------------------------------------------------------ -- Computing with traces --------------------------------- ------------------------------------------------------------ -- | Compute the vector from the given point to the boundary of the -- given object in the given direction, or @Nothing@ if there is no -- intersection. traceV :: Traced a => Point (V a) -> V a -> a -> Maybe (V a) traceV p v a = case appTrace (getTrace a) p v of Finite s -> Just (s *^ v) PosInfty -> Nothing -- | Given a base point and direction, compute the closest point on -- the boundary of the given object, or @Nothing@ if there is no -- intersection in the given direction. traceP :: Traced a => Point (V a) -> V a -> a -> Maybe (Point (V a)) traceP p v a = (p .+^) <$> traceV p v a -- | Like 'traceV', but computes a vector to the *furthest* point on -- the boundary instead of the closest. maxTraceV :: Traced a => Point (V a) -> V a -> a -> Maybe (V a) maxTraceV p = traceV p . negateV -- | Like 'traceP', but computes the *furthest* point on the boundary -- instead of the closest. maxTraceP :: Traced a => Point (V a) -> V a -> a -> Maybe (Point (V a)) maxTraceP p v a = (p .+^) <$> maxTraceV p v a