deepcontrol: A library that provides deep-level programming style or notation on Applicative and Monad

[ bsd3, control, library ] [ Propose Tags ] [ Report a vulnerability ]

This module provides more deeper level style of programming than the usual Applicative and Monad modules express.


[Skip to Readme]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 0.1.0.0, 0.2.0.0, 0.3.0.0, 0.3.2.0, 0.3.3.0, 0.4.1.0, 0.4.1.1, 0.4.2.0, 0.4.2.1, 0.4.3.0, 0.5.1.0, 0.5.2.0, 0.5.3.0, 0.5.4.0, 0.5.4.1, 0.5.4.2, 0.5.4.3
Dependencies base (>=4.8 && <5), mmorph (>=1.0), mtl (>=2.2), transformers (>=0.4) [details]
License BSD-3-Clause
Copyright (c) 2015 KONISHI Yohsuke
Author KONISHI Yohsuke
Maintainer ocean0yohsuke@gmail.com
Category Control
Home page https://github.com/ocean0yohsuke/deepcontrol
Bug tracker https://github.com/ocean0yohsuke/deepcontrol/issues
Source repo head: git clone https://github.com/ocean0yohsuke/deepcontrol.git
Uploaded by KONISHI_Yohsuke at 2015-11-22T18:08:46Z
Distributions
Reverse Dependencies 1 direct, 0 indirect [details]
Downloads 10612 total (53 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2015-11-22 [all 1 reports]

Readme for deepcontrol-0.5.4.1

[back to package description]

deepcontrol

A Haskell library that provides deeper level style of programming than the usual Control.Applicative and Control.Monad modules express.

Examples

Applicative

This module enables you to program in applicative style for much deeper level than the usual Control.Applicative module expresses. You would soon realize exactly what "much deeper level" means by reading the example codes below in order.

Prelude> :m DeepControl.Applicative

Level-0

bra-ket notation:

> (1+) |> 2
3
> 1 <| (+2)
3

> 1 <|(+)|> 2
3
> 1 <|(+)|> 2 <|(*)|> 3
9

> 1 <|(,)|> 2
(1,2)

Level-1

bra-ket notation:

> (1+) |$> [2]
[3]
> [1] <$| (+2)
[3]
> ("<"++)|$> ["a","b"] <$|(++">")
["<a>","<b>"]

> [(1+)] |*> [2]
[3]

> [1] <$|(+)|*> [2]
[3]
> [1] <$|(+)|*> [0,1,2]
[1,2,3]
> [0,1] <$|(+)|*> [2,3] <$|(+)|*> [4,5]
[6,7,7,8,7,8,8,9]

> filter (even <$|(&&)|*> (10>)) [1..100]
[2,4,6,8]
> filter (even <$|(&&)|*> (10>) <$|(&&)|*> (5<)) [1..100]
[6,8]

cover notation:

> :t (.*)
(.*) :: Applicative f => a -> f a

> (.*) 1 :: Maybe Int
Just 1
> (.*) 1 :: [Int]
[1]
> (.*) 1 :: Either () Int
Right 1

> foldr (\x acc -> x <$|(:)|*> acc) ((.*) []) [Just 1, Just 2,  Just 3]
Just [1,2,3]
> foldr (\x acc -> x <$|(:)|*> acc) ((.*) []) [Just 1, Nothing, Just 3]
Nothing

cover-braket notation:

> :t (|*)
(|*) :: Applicative f => f (a -> b) -> a -> f b

> [(1+)] |* 2
[3]
> [1] <$|(+)|* 2
[3]

> (,) |$> ["a1","a2"] |* 'b'
[("a1",'b'),("a2",'b')]

> (,,) 'a' |$> ["b1","b2"] |* 'c'
[('a',"b1",'c'),('a',"b2",'c')]

> (,,,) 'a' |$> ["b1","b2"] |* 'c' |* 'd'
[('a',"b1",'c','d'),('a',"b2",'c','d')]
> (,,,) 'a' |$> ["b1","b2"] |* 'c' |*> ["d1","d2"]
[('a',"b1",'c',"d1"),('a',"b1",'c',"d2"),('a',"b2",'c',"d1"),('a',"b2",'c',"d2")]

> 1 *| [(+2)]
[3]
> 1 *| [(+)] |* 2
[3]
> 1 *|[(+),(-),(*),(^)]|* 2
[3,-1,2,1]

> 1 *|Just (,)|* 2
Just (1,2)

Level-2

bra-ket notation:

> (1+) |$>> [[2]]
[[3]]
> [[2]] <<$| (+1)
[[3]]

> [Just 1] <<$|(+)|*>> [Just 2]
[Just 3]
> [Just 1] <<$|(,)|*>> [Just 2]
[Just (1,2)]

> [[1]] <<$|(+)|*>> [[2]] <<$|(^)|*>> [[3]]
[[0]]

cover notation:

> :t (.**)
(.**) :: (Applicative f1, Applicative f2) => a -> f1 (f2 a)
> :t (-*)
(-*) :: (Applicative f1, Applicative f2) => f1 a -> f1 (f2 a)

> (.**) 1 :: Maybe [Int]
Just [1]
> (-*) (Just 1) :: Maybe [Int]
Just [1]
> (.*) [1] :: Maybe [Int]
Just [1]

> foldr (\n acc -> n <<$|(+)|*>> acc) ((.**) 0) [Right (Just 1), Right (Just 2), Right (Just 3)] :: Either () (Maybe Int)
Right (Just 6)
> foldr (\n acc -> n <<$|(+)|*>> acc) ((.**) 0) [Right (Just 1), Right Nothing, Right (Just 3)] :: Either () (Maybe Int)
Right Nothing
> foldr (\n acc -> n <<$|(+)|*>> acc) ((.**) 0) [Right (Just 1), Right Nothing, Left ()]
Left ()

cover-braket notation:

> :t (|**)
(|**) :: (Applicative f1, Applicative f2) => f1 (f2 (a -> b)) -> a -> f1 (f2 b)

> [Just 1] <<$|(+)|** 2
[Just 3]
> 1 **|(+)|$>> [Just 2]
[Just 3]
> 1 **|[Just (+)]|**  2
[Just 3]
> 1 **|[Just (+), Just (-), Just (*), Nothing]|** 2
[Just 3,Just (-1),Just 2,Nothing]

> :t (|-*)
(|-*) :: (Applicative f1, Applicative f2) => f1 (f2 (a -> b)) -> f1 a -> f1 (f2 b)
> :t (|*-)
(|*-) :: (Applicative f1, Applicative f2) => f1 (f2 (a -> b)) -> f2 a -> f1 (f2 b)

> [Just 1] <<$|(+)|-* [2]
[Just 3]
> [Just 1] <<$|(+)|*- Just 2
[Just 3]
>      [1]  -*|(+)|$>> [Just 2]
[Just 3]
>   Just 1  *-|(+)|$>> [Just 2]
[Just 3]
>   Just 1  *-|[Just (+)]|** 2
[Just 3]
>   Just 1  *-|[Just (+)]|*- Just 2
[Just 3]
>      [1]  -*|[Just (+)]|*- Just 2
[Just 3]
>      [1]  -*|[Just (+), Just (-), Just (*), Nothing]|*- Just 2
[Just 3,Just (-1),Just 2,Nothing]
>    [1,2]  -*|[Just (+), Just (-), Just (*), Nothing]|*- Just 2
[Just 3,Just (-1),Just 2,Nothing,Just 4,Just 0,Just 4,Nothing]

Level-3, Level-4 and Level-5

Work well likewise.

Monad

This module enables you to program in Monad for much deeper level than the usual Control.Monad module expresses. You would soon realize exactly what "much deeper level" means by reading the example codes below in order.

Level-0

import DeepControl.Monad ((>-))

plus :: Int -> Int -> Int
plus x y = 
    x >- \a ->   -- (>-) is the level-0 bind function, analogous to (>>=)
    y >- \b ->
    a + b

-- > plus 3 4
-- 7

Traversable

Identity, List, Maybe, Either, Except and Writer monads are sinkable monads.

Prelude> :m DeepControl.Traversable
> :t sink
sink :: (Applicative f, Traversable c) => c (f a) -> f (c a)  -- synonym to 'sequenceA'

> sink $ Just [1]
[Just 1]
> sink2 $ Just (Right [1])
Right [Just 1]

> sink $ Right [Just 1]
[Right (Just 1)]
> sink2 $ Right [Just 1]
[Just (Right 1)]

So within these monads, deep level(layered) bind functions can be made.

Level-2

import DeepControl.Applicative ((.**))
import DeepControl.Monad ((>>==))

listlist :: [[String]]             -- List-List monad
listlist = [["a","b"]] >>== \x ->  -- (>>==) is the level-2 bind function, analogous to (>>=)
           [[0],[1,2]] >>== \y ->
           (.**) $ x ++ show y

-- > listlist
-- [["a0","b0"],["a0","b1","b2"],["a1","a2","b0"],["a1","a2","b1","b2"]]
import DeepControl.Applicative ((|$>), (.*), (.**))
import DeepControl.Monad ((>>), (>>==), (->~))
import Control.Monad.Writer

factorial :: Int ->
             Maybe (Writer [Int] Int)               -- Maybe-Writer monad
factorial n | n < 0  = Nothing
            | n == 0 = (.*) $ tell [0] >> (.*) 1
            | n > 0  = factorial (n-1) >>== \v ->   
                       tell [v] ->~                 -- (->~) is a level-2 cover-sequence function, analogous to (>>)
                       (.**) (n * v)

-- > runWriter |$> factorial 5
-- Just (120,[0,1,1,2,6,24])
-- > factorial (-1)
-- Nothing

Level-3

import DeepControl.Applicative ((|$>>), (.*), (.**), (.***))
import DeepControl.Monad ((>>), (>>>=), (>--~), (-->~))
import Control.Monad.Writer

factorial :: Int ->
             IO (Maybe (Writer [Int] Int))         -- IO-Maybe-Writer monad
factorial n | n < 0  = (.*) Nothing
            | n == 0 = (.**) $ tell [0] >> (.*) 1
            | n > 0  = factorial (n-1) >>>= \v ->  -- (>>>=) is the level-3 bind function, analogous to (>>=)
                       print v >--~                -- (>--~) is a level-3 cover-sequence function, analogous to (>>)
                       tell [v] -->~               -- (-->~) is a level-3 cover-sequence function too, analogous to (>>)
                       (.***) (n * v)

-- > runWriter |$>> factorial 5
-- 1
-- 1
-- 2
-- 6
-- 24
-- Just (120,[0,1,1,2,6,24])
-- > factorial (-1)
-- Nothing

Level-4 and Level-5

Work well likewise.

Monad-Morph

SinkT

IdentityT, ListT, MaybeT, ExceptT and WriterT monadtrans' are sinkable.

Prelude> :m DeepControl.Monad.Morph
> :t sinkT
sinkT
  :: (Monad m, Traversable x,
      DeepControl.Monad.Trans.MonadTrans_ x t, MMonad t, SinkT s) =>
     s (t m) a -> t (s m) a

> :m + Control.Monad.Trans.List Control.Monad.Trans.Maybe
> :m + DeepControl.Monad.Trans.Identity DeepControl.Monad.Trans.Except DeepControl.Monad.Trans.Writer

> sinkT $ MaybeT (ListT (Right [Just 1]))
ListT (MaybeT (Right (Just [1])))
> sinkT $ MaybeT (ListT (ExceptT (Identity (Right [Just 1]))))
ListT (MaybeT (ExceptT (Identity (Right (Just [1])))))

> sinkT2 $ MaybeT (ListT (ExceptT (Identity (Right [Just 1]))))
ListT (ExceptT (MaybeT (Identity (Just (Right [1])))))

So within these monadtrans', deep level(layered) trans-bind functions can be made.

Level-2

Here is a monad morph example how to use trans-map functions.

import DeepControl.Monad.Morph
import Control.Monad.Writer
import Control.Monad.State

-- i.e. :: StateT Int Identity ()
tick    :: State Int ()
tick = modify (+1)

tock                         ::                   StateT Int IO ()
tock = do
    generalize |>| tick      :: (Monad      m) => StateT Int m  ()  -- (|>|) is the level-1 trans-map function, analogous to (|$>)
    (|*|) $ putStrLn "Tock!" :: (MonadTrans t) => t          IO ()  -- (|*|) is the level-1 trans-cover function, the alias to 'lift' and analogous to (.*)

-- λ> runStateT tock 0
-- Tock!
-- ((),1)

-- i.e. :: StateT Int (WriterT [Int] Identity) ()
save    :: StateT Int (Writer  [Int]) ()
save = do
    n <- get
    (|*|) $ tell [n]

program ::                   StateT Int (WriterT [Int] IO) ()
program = replicateM_ 4 $ do
    (|*|) |>| tock
        :: (MonadTrans t) => StateT Int (t             IO) ()
    generalize |>>| save                                        -- (|>>|) is the level-2 trans-map function, analogous to (|$>>)
        :: (Monad      m) => StateT Int (WriterT [Int] m ) ()

-- λ> execWriterT (runStateT program 0)
-- Tock!
-- Tock!
-- Tock!
-- Tock!
-- [1,2,3,4]

Here is a monad morph example how to use trans-cover and trans-bind functions.

import DeepControl.Monad.Morph ((|>=), (|>>=), (|*|), (|-*|))
import DeepControl.Monad.Trans.Except

import Control.Monad.Trans.Maybe
import Control.Exception (IOException, try)

-----------------------------------------------
-- Level-1 

check :: IO a -> 
         ExceptT IOException IO a          -- ExceptT-IO monad
check io = ExceptT $ (try io)

viewFile :: IO ()                          -- IO monad
viewFile = do
    str <- readFile "test.txt"
    putStr str

program :: ExceptT IOException IO ()       -- ExceptT-IO monad
program = (|*|) viewFile |>= check         -- (|*|) is the level-1 trans-cover function, the alias to 'lift' and analogous to (.*)
                                           -- (|>=) is the level-1 trans-bind function, analogous to (>>=)

calc_program :: IO (Either IOException ())
calc_program = runExceptT $ program

-- > calc_program
-- Left test.txt: openFile: does not exist (No such file or directory)

-----------------------------------------------
-- Level-2

viewFile2 :: String -> 
             MaybeT IO ()                        -- MaybeT-IO monad
viewFile2 filename = do
    guard (filename /= "")
    str <- (|*|) $ readFile filename
    (|*|) $ putStr str

program2 :: String -> 
            (ExceptT IOException (MaybeT IO)) () -- ExceptT-MaybeT-IO monad
program2 filename = 
    (|*|) (viewFile2 filename) |>>= \x ->        -- (|>>=) is the level-2 trans-bind function, analogous to (>>=)
    (|-*|) $ check x                             -- (|-*|) is a level-2 trans-cover function, analogous to (-*)

calc_program2 :: String -> IO (Maybe (Either IOException ())) 
calc_program2 filename = runMaybeT . runExceptT $ program2 filename

-- > calc_program2 "test.txt"
-- Just (Left test.txt: openFile: does not exist (No such file or directory))
-- > calc_program2 ""
-- Nothing

Level-3, Level-4 and Level-5

Work well likewise.

Monad-Transformer

Level-2

Here is a monad transformer example how to implement Ackermann function improved to stop within a certain limit of time, with ReaderT-IdentityT2-IO-Maybe monad, a level-2 monad-transformation.

import DeepControl.Applicative
import DeepControl.Traversable (sink)
import DeepControl.Monad ((>-))
import DeepControl.Monad.Morph ((|*|), (|>|))
import DeepControl.Monad.Trans (transfold2, untransfold2)
import DeepControl.Monad.Trans.Identity (Identity(..), IdentityT(..), IdentityT2(..))
import Control.Monad.Reader
import Control.Monad.Trans.Maybe

import System.Timeout (timeout)

type TimeLimit = Int

ackermannTimeLimit :: TimeLimit -> Int -> Int -> 
                      IO (Maybe Int)                       -- IO-Maybe Monad
ackermannTimeLimit timelimit x y = timeout timelimit (ackermannIO x y)
  where
    ackermannIO :: Int -> Int -> IO Int
    ackermannIO 0 n = (.*) $ n + 1
    ackermannIO m n | m > 0 && n == 0 = ackermannIO (m-1) 1
                    | m > 0 && n > 0  = ackermannIO m (n-1) >>= ackermannIO (m-1)
 
ackermann :: Int -> Int -> 
             ReaderT TimeLimit (IdentityT2 IO Maybe) Int   -- ReaderT-IdentityT2-IO-Maybe monad
ackermann x y = do
    timelimit <- ask
    (|*|) . IdentityT2 $ ackermannTimeLimit timelimit x y  -- lift IO-Maybe function to ReaderT-IdentityT2-IO-Maybe function

calc_ackermann :: TimeLimit -> Int -> Int -> IO (Maybe Int)
calc_ackermann timelimit x y = ackermann x y >- \r -> runReaderT r timelimit
                                             >- runIdentityT2

-- λ> sink $ calc_ackermann 1000 |$> [0..4] |* 4
-- [Just 5,Just 6,Just 11,Just 125,Nothing]

ackermann' :: Int -> Int -> 
              ReaderT TimeLimit (MaybeT IO) Int                 -- ReaderT-MaybeT-IO monad
ackermann' x y = (transfold2 . runIdentityT2) |>| ackermann x y -- You can get the ordinary monad-transformed function from the natural one.

ackermann'' :: Int -> Int -> 
               ReaderT TimeLimit (IdentityT2 IO Maybe) Int       -- ReaderT-IdentityT2-IO-Maybe monad
ackermann'' x y = (IdentityT2 . untransfold2) |>| ackermann' x y -- You can get the natural monad-transformed function from the ordinary one.

Level-3, Level-4 and Level-5

Work well likewise.

Arrow