deepcontrol
A Haskell library that provides deeper level style of programming than the usual Control.Applicative and Control.Monad modules express.
Examples
This module enables you to program in applicative style for much deeper level than the usual Control.Applicative module expresses.
You would soon realize exactly what "much deeper level" means by reading the example codes below in order.
Prelude> :m DeepControl.Applicative
Level-0
bra-ket notation:
> (1+) |> 2
3
> 1 <| (+2)
3
> 1 <|(+)|> 2
3
> 1 <|(+)|> 2 <|(*)|> 3
9
> 1 <|(,)|> 2
(1,2)
Level-1
bra-ket notation:
> (1+) |$> [2]
[3]
> [1] <$| (+2)
[3]
> ("<"++)|$> ["a","b"] <$|(++">")
["<a>","<b>"]
> [(1+)] |*> [2]
[3]
> [1] <$|(+)|*> [2]
[3]
> [1] <$|(+)|*> [0,1,2]
[1,2,3]
> [0,1] <$|(+)|*> [2,3] <$|(+)|*> [4,5]
[6,7,7,8,7,8,8,9]
> filter (even <$|(&&)|*> (10>)) [1..100]
[2,4,6,8]
> filter (even <$|(&&)|*> (10>) <$|(&&)|*> (5<)) [1..100]
[6,8]
cover notation:
> :t (.*)
(.*) :: Applicative f => a -> f a
> (.*) 1 :: Maybe Int
Just 1
> (.*) 1 :: [Int]
[1]
> (.*) 1 :: Either () Int
Right 1
> foldr (\x acc -> x <$|(:)|*> acc) ((.*) []) [Just 1, Just 2, Just 3]
Just [1,2,3]
> foldr (\x acc -> x <$|(:)|*> acc) ((.*) []) [Just 1, Nothing, Just 3]
Nothing
cover-braket notation:
> :t (|*)
(|*) :: Applicative f => f (a -> b) -> a -> f b
> [(1+)] |* 2
[3]
> [1] <$|(+)|* 2
[3]
> (,) |$> ["a1","a2"] |* 'b'
[("a1",'b'),("a2",'b')]
> (,,) 'a' |$> ["b1","b2"] |* 'c'
[('a',"b1",'c'),('a',"b2",'c')]
> (,,,) 'a' |$> ["b1","b2"] |* 'c' |* 'd'
[('a',"b1",'c','d'),('a',"b2",'c','d')]
> (,,,) 'a' |$> ["b1","b2"] |* 'c' |*> ["d1","d2"]
[('a',"b1",'c',"d1"),('a',"b1",'c',"d2"),('a',"b2",'c',"d1"),('a',"b2",'c',"d2")]
> 1 *| [(+2)]
[3]
> 1 *| [(+)] |* 2
[3]
> 1 *|[(+),(-),(*),(^)]|* 2
[3,-1,2,1]
> 1 *|Just (,)|* 2
Just (1,2)
Level-2
bra-ket notation:
> (1+) |$>> [[2]]
[[3]]
> [[2]] <<$| (+1)
[[3]]
> [Just 1] <<$|(+)|*>> [Just 2]
[Just 3]
> [Just 1] <<$|(,)|*>> [Just 2]
[Just (1,2)]
> [[1]] <<$|(+)|*>> [[2]] <<$|(^)|*>> [[3]]
[[0]]
cover notation:
> :t (.**)
(.**) :: (Applicative f1, Applicative f2) => a -> f1 (f2 a)
> :t (-*)
(-*) :: (Applicative f1, Applicative f2) => f1 a -> f1 (f2 a)
> (.**) 1 :: Maybe [Int]
Just [1]
> (-*) (Just 1) :: Maybe [Int]
Just [1]
> (.*) [1] :: Maybe [Int]
Just [1]
> foldr (\n acc -> n <<$|(+)|*>> acc) ((.**) 0) [Right (Just 1), Right (Just 2), Right (Just 3)] :: Either () (Maybe Int)
Right (Just 6)
> foldr (\n acc -> n <<$|(+)|*>> acc) ((.**) 0) [Right (Just 1), Right Nothing, Right (Just 3)] :: Either () (Maybe Int)
Right Nothing
> foldr (\n acc -> n <<$|(+)|*>> acc) ((.**) 0) [Right (Just 1), Right Nothing, Left ()]
Left ()
cover-braket notation:
> :t (|**)
(|**) :: (Applicative f1, Applicative f2) => f1 (f2 (a -> b)) -> a -> f1 (f2 b)
> [Just 1] <<$|(+)|** 2
[Just 3]
> 1 **|(+)|$>> [Just 2]
[Just 3]
> 1 **|[Just (+)]|** 2
[Just 3]
> 1 **|[Just (+), Just (-), Just (*), Nothing]|** 2
[Just 3,Just (-1),Just 2,Nothing]
> :t (|-*)
(|-*) :: (Applicative f1, Applicative f2) => f1 (f2 (a -> b)) -> f1 a -> f1 (f2 b)
> :t (|*-)
(|*-) :: (Applicative f1, Applicative f2) => f1 (f2 (a -> b)) -> f2 a -> f1 (f2 b)
> [Just 1] <<$|(+)|-* [2]
[Just 3]
> [Just 1] <<$|(+)|*- Just 2
[Just 3]
> [1] -*|(+)|$>> [Just 2]
[Just 3]
> Just 1 *-|(+)|$>> [Just 2]
[Just 3]
> Just 1 *-|[Just (+)]|** 2
[Just 3]
> Just 1 *-|[Just (+)]|*- Just 2
[Just 3]
> [1] -*|[Just (+)]|*- Just 2
[Just 3]
> [1] -*|[Just (+), Just (-), Just (*), Nothing]|*- Just 2
[Just 3,Just (-1),Just 2,Nothing]
> [1,2] -*|[Just (+), Just (-), Just (*), Nothing]|*- Just 2
[Just 3,Just (-1),Just 2,Nothing,Just 4,Just 0,Just 4,Nothing]
Level-3, Level-4 and Level-5
Work well likewise.
This module enables you to program in Monad for much deeper level than the usual Control.Monad module expresses.
You would soon realize exactly what "much deeper level" means by reading the example codes below in order.
Level-0
import DeepControl.Monad ((>-))
plus :: Int -> Int -> Int
plus x y =
x >- \a -> -- (>-) is the level-0 bind function, analogous to (>>=)
y >- \b ->
a + b
-- > plus 3 4
-- 7
Identity, List, Maybe, Either, Except and Writer monads are sinkable monads.
Prelude> :m DeepControl.Traversable
> :t sink
sink :: (Applicative f, Traversable c) => c (f a) -> f (c a) -- synonym to 'sequenceA'
> sink $ Just [1]
[Just 1]
> sink2 $ Just (Right [1])
Right [Just 1]
> sink $ Right [Just 1]
[Right (Just 1)]
> sink2 $ Right [Just 1]
[Just (Right 1)]
So within these monads, deep level(layered) bind functions can be made.
Level-2
import DeepControl.Applicative ((.**))
import DeepControl.Monad ((>>==))
listlist :: [[String]] -- List-List monad
listlist = [["a","b"]] >>== \x -> -- (>>==) is the level-2 bind function, analogous to (>>=)
[[0],[1,2]] >>== \y ->
(.**) $ x ++ show y
-- > listlist
-- [["a0","b0"],["a0","b1","b2"],["a1","a2","b0"],["a1","a2","b1","b2"]]
import DeepControl.Applicative ((|$>), (.*), (.**))
import DeepControl.Monad ((>>), (>>==), (->~))
import Control.Monad.Writer
factorial :: Int ->
Maybe (Writer [Int] Int) -- Maybe-Writer monad
factorial n | n < 0 = Nothing
| n == 0 = (.*) $ tell [0] >> (.*) 1
| n > 0 = factorial (n-1) >>== \v ->
tell [v] ->~ -- (->~) is a level-2 cover-sequence function, analogous to (>>)
(.**) (n * v)
-- > runWriter |$> factorial 5
-- Just (120,[0,1,1,2,6,24])
-- > factorial (-1)
-- Nothing
Level-3
import DeepControl.Applicative ((|$>>), (.*), (.**), (.***))
import DeepControl.Monad ((>>), (>>>=), (>--~), (-->~))
import Control.Monad.Writer
factorial :: Int ->
IO (Maybe (Writer [Int] Int)) -- IO-Maybe-Writer monad
factorial n | n < 0 = (.*) Nothing
| n == 0 = (.**) $ tell [0] >> (.*) 1
| n > 0 = factorial (n-1) >>>= \v -> -- (>>>=) is the level-3 bind function, analogous to (>>=)
print v >--~ -- (>--~) is a level-3 cover-sequence function, analogous to (>>)
tell [v] -->~ -- (-->~) is a level-3 cover-sequence function too, analogous to (>>)
(.***) (n * v)
-- > runWriter |$>> factorial 5
-- 1
-- 1
-- 2
-- 6
-- 24
-- Just (120,[0,1,1,2,6,24])
-- > factorial (-1)
-- Nothing
Level-4 and Level-5
Work well likewise.
SinkT
IdentityT, ListT, MaybeT, ExceptT and WriterT monadtrans' are sinkable.
Prelude> :m DeepControl.Monad.Morph
> :t sinkT
sinkT
:: (Monad m, Traversable x,
DeepControl.Monad.Trans.MonadTrans_ x t, MMonad t, SinkT s) =>
s (t m) a -> t (s m) a
> :m + Control.Monad.Trans.List Control.Monad.Trans.Maybe
> :m + DeepControl.Monad.Trans.Identity DeepControl.Monad.Trans.Except DeepControl.Monad.Trans.Writer
> sinkT $ MaybeT (ListT (Right [Just 1]))
ListT (MaybeT (Right (Just [1])))
> sinkT $ MaybeT (ListT (ExceptT (Identity (Right [Just 1]))))
ListT (MaybeT (ExceptT (Identity (Right (Just [1])))))
> sinkT2 $ MaybeT (ListT (ExceptT (Identity (Right [Just 1]))))
ListT (ExceptT (MaybeT (Identity (Just (Right [1])))))
So within these monadtrans', deep level(layered) trans-bind functions can be made.
Level-2
Here is a monad morph example how to use trans-map functions.
import DeepControl.Monad.Morph
import Control.Monad.Writer
import Control.Monad.State
-- i.e. :: StateT Int Identity ()
tick :: State Int ()
tick = modify (+1)
tock :: StateT Int IO ()
tock = do
generalize |>| tick :: (Monad m) => StateT Int m () -- (|>|) is the level-1 trans-map function, analogous to (|$>)
(|*|) $ putStrLn "Tock!" :: (MonadTrans t) => t IO () -- (|*|) is the level-1 trans-cover function, the alias to 'lift' and analogous to (.*)
-- λ> runStateT tock 0
-- Tock!
-- ((),1)
-- i.e. :: StateT Int (WriterT [Int] Identity) ()
save :: StateT Int (Writer [Int]) ()
save = do
n <- get
(|*|) $ tell [n]
program :: StateT Int (WriterT [Int] IO) ()
program = replicateM_ 4 $ do
(|*|) |>| tock
:: (MonadTrans t) => StateT Int (t IO) ()
generalize |>>| save -- (|>>|) is the level-2 trans-map function, analogous to (|$>>)
:: (Monad m) => StateT Int (WriterT [Int] m ) ()
-- λ> execWriterT (runStateT program 0)
-- Tock!
-- Tock!
-- Tock!
-- Tock!
-- [1,2,3,4]
Here is a monad morph example how to use trans-cover and trans-bind functions.
import DeepControl.Monad.Morph ((|>=), (|>>=), (|*|), (|-*|))
import DeepControl.Monad.Trans.Except
import Control.Monad.Trans.Maybe
import Control.Exception (IOException, try)
-----------------------------------------------
-- Level-1
check :: IO a ->
ExceptT IOException IO a -- ExceptT-IO monad
check io = ExceptT $ (try io)
viewFile :: IO () -- IO monad
viewFile = do
str <- readFile "test.txt"
putStr str
program :: ExceptT IOException IO () -- ExceptT-IO monad
program = (|*|) viewFile |>= check -- (|*|) is the level-1 trans-cover function, the alias to 'lift' and analogous to (.*)
-- (|>=) is the level-1 trans-bind function, analogous to (>>=)
calc_program :: IO (Either IOException ())
calc_program = runExceptT $ program
-- > calc_program
-- Left test.txt: openFile: does not exist (No such file or directory)
-----------------------------------------------
-- Level-2
viewFile2 :: String ->
MaybeT IO () -- MaybeT-IO monad
viewFile2 filename = do
guard (filename /= "")
str <- (|*|) $ readFile filename
(|*|) $ putStr str
program2 :: String ->
(ExceptT IOException (MaybeT IO)) () -- ExceptT-MaybeT-IO monad
program2 filename =
(|*|) (viewFile2 filename) |>>= \x -> -- (|>>=) is the level-2 trans-bind function, analogous to (>>=)
(|-*|) $ check x -- (|-*|) is a level-2 trans-cover function, analogous to (-*)
calc_program2 :: String -> IO (Maybe (Either IOException ()))
calc_program2 filename = runMaybeT . runExceptT $ program2 filename
-- > calc_program2 "test.txt"
-- Just (Left test.txt: openFile: does not exist (No such file or directory))
-- > calc_program2 ""
-- Nothing
Level-3, Level-4 and Level-5
Work well likewise.
Level-2
Here is a monad transformer example how to implement Ackermann function improved to stop within a certain limit of time, with ReaderT-IdentityT2-IO-Maybe monad, a level-2 monad-transformation.
import DeepControl.Applicative
import DeepControl.Traversable (sink)
import DeepControl.Monad ((>-))
import DeepControl.Monad.Morph ((|*|), (|>|))
import DeepControl.Monad.Trans (transfold2, untransfold2)
import DeepControl.Monad.Trans.Identity (Identity(..), IdentityT(..), IdentityT2(..))
import Control.Monad.Reader
import Control.Monad.Trans.Maybe
import System.Timeout (timeout)
type TimeLimit = Int
ackermannTimeLimit :: TimeLimit -> Int -> Int ->
IO (Maybe Int) -- IO-Maybe Monad
ackermannTimeLimit timelimit x y = timeout timelimit (ackermannIO x y)
where
ackermannIO :: Int -> Int -> IO Int
ackermannIO 0 n = (.*) $ n + 1
ackermannIO m n | m > 0 && n == 0 = ackermannIO (m-1) 1
| m > 0 && n > 0 = ackermannIO m (n-1) >>= ackermannIO (m-1)
ackermann :: Int -> Int ->
ReaderT TimeLimit (IdentityT2 IO Maybe) Int -- ReaderT-IdentityT2-IO-Maybe monad
ackermann x y = do
timelimit <- ask
(|*|) . IdentityT2 $ ackermannTimeLimit timelimit x y -- lift IO-Maybe function to ReaderT-IdentityT2-IO-Maybe function
calc_ackermann :: TimeLimit -> Int -> Int -> IO (Maybe Int)
calc_ackermann timelimit x y = ackermann x y >- \r -> runReaderT r timelimit
>- runIdentityT2
-- λ> sink $ calc_ackermann 1000 |$> [0..4] |* 4
-- [Just 5,Just 6,Just 11,Just 125,Nothing]
ackermann' :: Int -> Int ->
ReaderT TimeLimit (MaybeT IO) Int -- ReaderT-MaybeT-IO monad
ackermann' x y = (transfold2 . runIdentityT2) |>| ackermann x y -- You can get the ordinary monad-transformed function from the natural one.
ackermann'' :: Int -> Int ->
ReaderT TimeLimit (IdentityT2 IO Maybe) Int -- ReaderT-IdentityT2-IO-Maybe monad
ackermann'' x y = (IdentityT2 . untransfold2) |>| ackermann' x y -- You can get the natural monad-transformed function from the ordinary one.
Level-3, Level-4 and Level-5
Work well likewise.