
Cryptographic Protocol Analysis and
Compilation Using CPSA and Roletran

John D. Ramsdell(B)

The MITRE Corporation, Bedford, MA 01730, USA
ramsdell@mitre.org

Abstract. The Cryptographic Protocol Shapes Analyzer cpsa deter-
mines if a cryptographic protocol achieves authentication and secrecy
goals. It can be difficult to ensure that an implementation of a protocol
matches up with what cpsa analyzed, and therefore be sure the imple-
mentation achieves the security goals determined by cpsa.

Roletran is a program distributed with cpsa that translates a role in
a protocol into a language independent description of a procedure that is
easily translated into an existing computer language. This paper shows
how we ensure the procedure produced by Roletran is faithful to strand
space semantics and therefore achieves the security goals determined by
cpsa.

Real implementations of cryptographic functions make use of proba-
bilistic encryption, but cpsa will conclude that two encryptions are the
same if they are constructed with the same plaintext and key. The paper
concludes by showing how we ensure that executions of generated code
that make use of probabilistic encryption achieve the goals determined
by cpsa.

1 Introduction

The Cryptographic Protocol Shapes Analyzer (cpsa) [8] attempts to enumerate
all essentially different executions possible for a cryptographic protocol. We call
them the shapes of the protocol. Naturally occurring protocols have only finitely
many, indeed very few shapes. Authentication and secrecy properties are easy
to determine from them, as are attacks and anomalies.

For each input problem, the cpsa program is given some initial behavior,
and it discovers what shapes are compatible with it. Normally, the initial behav-
ior is from the point of view of one participant. The analysis reveals what the
other participants must have done, given the participant’s view. The search is
complete, i.e. we proved every shape can in fact be found in a finite number of
steps, relative to a procedural semantics of protocol roles [7].

This paper is dedicated to Joshua Guttman in gratitude for all the wonderful collabora-
tions we shared throughout our careers. From the first rigorous verification of the imple-
mentation of a programming language in actual use (Scheme via the vlisp project [6]),
to cryptographic protocol analysis (cpsa), it has been a joy to work with you.

c© The Author(s) 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 355–369, 2021.
https://doi.org/10.1007/978-3-030-91631-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_20&domain=pdf
http://orcid.org/0000-0002-5547-0427
https://doi.org/10.1007/978-3-030-91631-2_20

356 J. D. Ramsdell

When we say a role has procedural semantics, we mean that there exists a
program that implements the intent of the specified role. Until now, establish-
ing the correspondence between a cpsa role and its implementation has been
informal. It requires a programmer that is well versed in the semantics of cpsa.
As the messages used in roles become more complex, the likelihood of errors in
the correspondence increases, even when employing the best programmer/cpsa
expert. The Roletran compiler automates the translation of a cpsa role into a
procedure that is easily translated into the source for an existing programming
language, in our case, Rust. It uses the same algorithms implemented in cpsa to
ensure a faithful translation. But how do we know its translations are correct?

Section 4 presents the abstract semantics of procedures used to guide our
implementation of a runtime system for Roletran generated programs. It includes
a definition of correctness, Definition 8, that precisely defines whether the output
of Roletran correctly implements the role it is given.

The semantics presented in Sect. 4 has been specified in Coq [1]. An attempt
was made to specify the Roletran compiler as a function in Coq and prove that
every output of Roletran correctly implements the role it is given. However,
the proofs turned out to be too complex and challenging, and the attempt was
abandoned.

As a fallback, one can present Coq with the runtime semantics, a role, and
procedure, and when the procedure is the output of Roletran, Coq will automat-
ically prove it correctly implements the role. The Coq automation succeeds on
protocols of substantial size. Thus for high-assurance applications, we provide a
means to validate compiler input/output pairs in lieu of verifying the compiler
algorithm.

There is one loose end in what might seem to be a tidy story at this
point. Real implementations of cryptographic functions make use of probabilistic
encryption. This means that there may be several bit patterns that correspond
to one encryption term in cpsa. If the compiler generates code that asserts that
two encryptions are equal, the assertion might fail at runtime if the two encryp-
tions differ only because of the randomness used to generate them. To explore
these issues, a more concrete semantics has been defined that models randomness
in encryptions. The paper concludes by showing that

1. the concrete semantics is faithful to the abstract semantics, in that for every
run of the concrete semantics, there is a corresponding run of the abstract
semantics, and

2. the concrete semantics is adequate with respect to the abstract semantics,
in that for every run of the abstract semantics and choice of random values,
there is a corresponding run of the concrete semantics.

Therefore, probabilistic encryption is handled correctly.

∗ ∗ ∗

The Roletran compiler and supporting Coq proofs were written by the author
and the sources are available on GitHub [8]. The sources contain about 5800 lines
of Coq scripts and the Intro module presents an overview of the work.

Cryptographic Protocol Analysis and Compilation 357

There have been a variety of systems that compile high-level descriptions of
protocols into executable code [2,5]. To our knowledge, this is the first example
of a compiler that uses the input of a cryptographic protocol analyzer as its sole
input and honors its semantics.

Notation. A finite sequence f is a function from an initial segment of the natural
numbers. The length of f is |f |, and f = 〈f(0), . . . , f(n − 1)〉 for n = |f |. The
sequence x::f is 〈x, f(0), . . . , f(n−1)〉. The concatenation of sequences f1 and f2
is f1

� f2.
If S is a set, then S∗ is the set of finite sequences over S, and S+ is the

non-empty finite sequences over S. If S is a finite set, then
−→
S is some injective

sequence that is onto S. That is, it is a sequence that contains every element in
S without duplicates.

Suppose g : X ⇀ Y is a finite partial function.

g[x �→ y](z) =
{

y if z = x,
g(z) otherwise.

We use ∅ to denote the finite partial function that has an empty domain.

2 Message Algebras

This section describes the formalism on which cpsa message algebras are based.
The parameters to an algebra are:

1. a set of messages Alg. The set of messages Alg is the carrier set (or domain)
of a term algebra.

2. a set of basic values BV ⊂ Alg. Keys and nonces are examples of basic values.
3. a carried by relation 	 ⊆ Alg × Alg. Intuitively, a message t0 is carried by t1

if it is possible to extract t0 from t1 by someone who knows the relevant
decryption keys.

Example Message Algebra. The signature of one possible order-sorted [4] message
algebra is in Fig. 1. The algebra is the simplification of the cpsa message algebra
used by the examples in this paper.

In an order-sorted algebra, each variable x has a unique sort S. The declara-
tion of x is x : S.

The algebra of interest is the order-sorted quotient term algebra generated by
a set of declarations X. The message algebra AlgX is the carrier set for sort M.
The set of basic values BVX is the union of the carrier sets for sorts A, S, and D.
The carrier set for sort A contains the algebra’s asymmetric key pairs. We write
t : S to say that term t is in the carrier set of sort S.

A variable has no intrinsic sort associated with it. The declarations that
generate an algebra determine the sort of variables that occur within terms of
the algebra. A variable declared to be of sort M is called a message variable.

358 J. D. Ramsdell

Sorts: M, A, S, D
Subsorts: A < M, S < M, D < M
Operations: (·, ·) : M × M → M Pairing

{| · |}(·) : M × M → M Encryption
: M → M Hash
(·)−1 : M → M Key inverse
τ0, τ1, . . . : M Tag constants

Equations: (x−1)−1 = x for x : A; x−1 = x otherwise

Fig. 1. Simple crypto algebra signature

The Simple Crypto Algebra is interesting because like cpsa’s message alge-
bra, any message can be used as a key when constructing an encryption, with
the exception of a message variable. The reason for the exception is that message
variable x could be unified with any basic value, and so what equation applies
to x−1?

Each element of the message algebra is a set of terms. The canonical represen-
tative of each element is the term with the fewest number of occurrences of the
inverse operation (·)−1. Thus when x is a variable, the canonical representative
of the algebra element that contains

((x−1)
−1

)
−1

is x−1 if x : A, and x otherwise. Message t0 occurs in t1 iff the canonical repre-
sentative of t0 is a subterm of the canonical representative of t1. In what follows,
we conflate each algebra element with its canonical representative.

Definition 1 (Encryption free terms). Term t is encryption free, written
enc free t, iff no encryption term occurs in t.

A message t0 is carried by t1, written t0 	 t1, if t0 can be derived from t1
given the right set of keys. That is: 	 is the smallest reflexive, transitive relation
such that

t0 	 (t0, t1), t1 	 (t0, t1), and t0 	 {|t0|}t1 .

3 Strand Spaces with Channels

The foundation of this work is a version of strand spaces in which messages are
transmitted over channels. This change facilitates the translation of a role into
code by adding a natural handle for performing input and output in generated
code.

Recall that a strand space [9] is a finite map from a local session of a protocol,
called a strand, to its behavior, called a trace. The addition of channels changes
the standard definition of a trace, but otherwise leaves the basic definitions of
strand space theory unchanged.

Cryptographic Protocol Analysis and Compilation 359

A channel is a variable of sort C. For h :C and t :M, [h, t] associates message
t with channel h, and is called a channeled message. The additions to a message
signature required to support channels follow.

Extra Sorts: C,CM
Operation: [·, ·] : C × M → CM Channeled messages

The sort associated with a channeled message is CM. The carrier set for that
sort is AlgX . Variables of sort CM are not allowed in X. The carrier set for sort
C is ChnX . Let ̂AlgX = AlgX ∪ ChnX .

Traces and Roles. The behavior of a strand, its trace, is a finite non-empty
sequence of events. An event is either a channeled message transmission or a
channeled message reception. An event transmitting m ∈ AlgX is written as +m;
and an event receiving channeled message m is written as −m. If e = ±[h, t] is
an event, then msg(e) = t. The set of traces over AlgX is (±AlgX)

+
.

A message t originates in trace c at index i iff c(i) = +[h, t1], t 	 t1, and for
all j < i, t 	 msg(c(j)). A message t uniquely originates in strand space Θ iff
it originates in exactly one trace in Θ. A message t is non-originating in strand
space Θ iff it originates in no trace in Θ.

Structure rX(c, i, o, u) is a role when

1. c is a trace in (±AlgX)
+

,
2. each variable declared in X occurs in c,
3. i ∈ (BVX ∪ ChnX)∗ is a sequence of basic values and channels that specify

the inputs to the role,
4. o ∈ Alg∗

X is a sequence of terms that specify the outputs of the role, and
5. u ⊆ BVX is a set of basic values that originate in c.

The elements of i and o are a sequence because the order matters when generating
a procedure from the role. Elements of u are freshly generated when the compiled
role executes.

Executions. An execution eY (c, i, o, u) is similar to a role except that its uniquely
originating values are a sequence, not a set. The semantics of an execution
requires that the fresh values be presented in the order in which they are con-
sumed. Otherwise, the components of an execution must satisfy the same con-
straints. Let φ : ̂AlgX → ̂AlgY be a homomorphism, and φ̄ be the extension of φ
to traces and sequences of terms in the obvious way.

Definition 2 (Run of a role). Execution eY (c′, i′, o′, u′) is a run of role
rX(c, i, o, u) iff there exists a homomorphism φ such that φ̄(c) = c′, φ̄(i) = i′,
φ̄(o) = o′, φ̄(u) = u′, and u is some sequence that contains the elements in u.

The strand spaces model of a protocol execution is a bundle. A bundle adds
a communication relation to a strand space, and constraints that ensure that
causality is respected in that every received message is transmitted previously

360 J. D. Ramsdell

in the bundle. In strand spaces, a Dolev-Yao adversary [3] is modeled by strands
in a bundle along with the strands derived from the protocol being analyzed.

cpsa does not represent executions using bundles or adversarial behavior
using strands. Instead, it uses a skeleton to represent a collection of bundles. A
skeleton has a strand space, an ordering relation between events, and some orig-
ination assumptions that must be satisfied by the strand space of the skeleton.
A bundle is modeled by a skeleton if it contains all of the structure specified by
the skeleton, in other words, there is a homomorphism from the skeleton into
the bundle.

For each input problem, cpsa is given some initial behavior, and it discovers
what shapes are compatible with it. A shape is a special kind of skeleton in that
it contains enough protocol behavior to explain all message receptions in the
presence of adversarial behavior, and it is minimal in that if there is a homo-
morphism from another skeleton to the shape, then there is a homomorphism
from the shape to the other skeleton.

To describe the executions of a protocol, each strand in a skeleton must be
an instance of some role in the protocol, which is defined to mean there is a
homomorphism from the role to the strand. The definition of a run of a role
codifies that link for procedure execution semantics.

3.1 Unilateral Protocol Example

The Unilateral Protocol is a very simple authentication protocol. It consists of
two roles, an initiator and a responder. The initiator encrypts a freshly chosen
nonce using the public key of the responder and sends it. The responder decrypts
the encryption it receives using its private key, and transmits the plaintext. If the
initiator receives the nonce it sent unencrypted, it concludes it is communicating
with a responder that possesses the corresponding private key, assuming the
private key has not been compromised. In the notation presented above, the
protocol is specified as follows.

Example 3 (Unilateral Protocol)

init = rh:C,n:D,k:A(〈+[h, {|n|}k],−[h, n]〉, 〈h, k〉, 〈n〉, {n})
resp = rh:C,n:D,k:A(〈−[h, {|n|}k],+[h, n]〉, 〈h, k−1〉, 〈n〉, {})

Both the initiator and the responder use a message algebra generated by
a channel h, a datum n, and an asymmetric key k. The trace of the initiator
contains two events, a channeled message transmission followed by a channeled
message reception. The inputs to the initiator are a channel and the public part
of a key pair. The inputs to the responder are a channel and the private part
of a key pair. The outputs produced by both roles is the single nonce n. The
initiator freshly generates nonce n, and the responder freshly generates nothing.

cpsa determines that if an instance of an initiator role runs to completion,
and the private part of the key pair is not compromised, i.e. is non-originating,
then there must have been a corresponding run of the responder role that agrees
with the initiator on the values of the nonce and the public key.

Cryptographic Protocol Analysis and Compilation 361

3.2 Channel Assumptions

With the addition of channels to cpsa, skeletons now include additional kinds of
assumptions besides origination assumptions. A channel can be assumed to be
authenticated and/or confidential. In a bundle, when a channel is authenticated,
the adversary is not allowed to transmit a message on the channel, and when
it is confidential, the adversary is not allowed to received a message on the
channel. The addition of channel assumptions allows interesting new analyses of
protocols, but does not impact Roletran, so it will not be further discussed.

4 Abstract Execution Semantics

Roletran generates a procedure for each role in a protocol. To build an executable
program, the procedure is trivially translated into source code for an existing
programming language, in our case Rust. The code is compiled and linked with
a runtime system. The implementer of the program provides a main routine that
invokes the procedure with inputs that must be compatible with inputs of the
translated role. We trust the implementor to do so.

When the program executes, it goes through state changes associated with
each statement generated by Roletran. The abstract execution semantics speci-
fies an abstract view of properties of the states that must be preserved in order
to be in compliance with the execution semantics stated in the previous section.

When the compiled translation of a role is executing, the runtime system
for the source language maintains a binding between program variables and
binary objects that represent message fragments. The abstract execution seman-
tics models these bindings with a map from program variables to terms in the
message algebra. This map is called an environment. The implementor of the
runtime library must ensure that each binary object naturally abstracts into the
corresponding term in the message algebra as specified by the current environ-
ment.

A runtime system for a program provides two more capabilities, support for
sending and receiving messages on channels, and freshly generating random val-
ues. To model freshly generating random values, the abstract execution semantics
maintains a sequence of basic values that is the source of randomness. Initially
it is the sequence of uniquely originating values in an execution. The implemen-
tor of the runtime library must ensure each binary object it creates naturally
abstracts into the corresponding term in the message algebra as specified by the
abstract execution semantics.

To model messaging on channels, the abstract execution semantics maintains
a trace that initially is the trace in the execution. The implementor of the run-
time library must ensure each binary object transmitted or received naturally
abstracts into the corresponding event over the message algebra as specified by
the abstract execution semantics.

362 J. D. Ramsdell

ae : AlgY environment
× (±AlgY)

∗
input trace

× Alg∗
Y input fresh values

× E expression
× AlgY value
× (±AlgY)

∗
output trace

× Alg∗
Y output fresh values

ae(E, c, u, quot(τ) , τ, c, u)1()

E(v1) = t1 E(v2) = t2
ae(E, c, u, pair(v1, v2) , (t1, t2), c, u)

(2)

E(v1) = t1 E(v2) = t2
ae(E, c, u, encr(v1, v2) , {|t1|}t2 , c, u)

(3)

E(v1) = t1
ae(E, c, u, hash(v1) , #t1, c, u)

(4)

E(v1) = (t1, t2)
ae(E, c, u, frst(v1) , t1, c, u)

(5)

E(v1) = (t1, t2)
ae(E, c, u, scnd(v1) , t2, c, u)

(6)

E(v1) = {|t1|}t2 E(v2) = t2
−1 enc free t2

−1

ae(E, c, u, decr(v1, v2) , t1, c, u)
(7)

E(v1) = h

ae(E, −[h, t] :: c, u, recv(v1) , t, c, u)
(8)

ae(E, c, t :: u, frsh , t, c, u)9()

Fig. 2. Abstract execution expression semantics

The output of the compiler is an executable procedure x(p, s), where p is
a sequence of parameters and s is a sequence of statements. Each parameter
is a program variable and its type, and is associated with an input when the
procedure is invoked. A type is one of M, A, I, S, D, and C.

The code generated by the compiler is a sequence of statements. Let V be
the syntactic category for program variables. The syntax of a statement is

S :: = V : T ← E | V ≈ V | invp(V,V) | send(V,V) | return(V∗)
T :: = M | A | I | S | D | C

E :: = quot(τ) | pair(V,V) | encr(V,V) | hash(V)
| frst(V) | scnd(V) | decr(V,V) | recv(V) | frsh

Cryptographic Protocol Analysis and Compilation 363

as : AlgY input environment
× (±AlgY)

∗
input trace

× Alg∗
Y input fresh values

× S statement
× AlgY output environment
× (±AlgY)

∗
output trace

× Alg∗
Y output fresh values

ae(E, c1, u1, x, t, c2, u2) chk(t, k)
as(E, c1, u1, v : k ← x , E[v t], c2, u2)

(10)

chk(t,M) always true
chk(t,A) iff t is a variable of sort A
chk(t, I) iff t−1 is a variable of sort A
chk(t, S) iff t is a variable of sort S
chk(t,D) iff t is a variable of sort D
chk(t,C) iff t is a variable of sort C

(11)

E(v1) = E(v2) enc free E(v1)
as(E, c, u, v1 ≈ v2 , E, c, u)

(12)

E(v1) = E(v2)−1 enc free E(v1)
as(E, c, u, invp(v1, v2) , E, c, u)

(13)

E(v1) = h E(v2) = t

as(E, +[h, t] :: c, u, send(v1, v2) , E, c, u)
(14)

as∗(E, , , ,E)51()

as(E1, c1, u1, x,E2, c2, u2) as∗(E2, c2, u2, s, E3)
as∗(E1, c1, u1, x :: s, E3)

(16)

Fig. 3. Abstract execution statement semantics

At runtime, a program variable is associated with an element of a message
algebra. This association is represented by an environment E :V ⇀ ̂AlgY , a finite
partial function. The semantics of a sequence of statements is specified using the
relation asret(E, c, u, s, o), where E is an environment, c is a trace in (±AlgY)

∗
,

u is a sequence of fresh terms in Alg∗
Y , s is a sequence of statements, and o is a

sequence of outputs in Alg∗
Y .

as∗(E, c, u, s, E′) E′ ◦ 〈v0, v1, . . .〉 = 〈t0, t1, . . .〉
asret(E, c, u, s � 〈�return(v0, v1, . . .)�〉, 〈t0, t1, . . .〉)

(17)

The semantics of the remaining statements are given in Fig. 3. The semantics of
expressions are given in Fig. 2. Note that Eq. 7, 12, and 13 make assertions that
some terms must be free of encryptions. The purpose of these restrictions has to

364 J. D. Ramsdell

Fig. 4. Initiator procedure execution

do with the correct handling of probabilistic encryption and will be explained in
Sect. 7.

The intuition behind the semantics can be gleaned from the statement seman-
tics as in Fig. 3. Think of an environment, trace, fresh values triple (E, c, u) as
a state, and a statement as a label. Figure 3 specifies a labeled transition sys-
tem. It defines how the states evolve during the course of an execution. For a
sameness test �v1 ≈ v2� (Eq. 12), the state does not change. Execution halts
if the test fails. For a send statement �send(v1, v2)� (Eq. 14), only the trace is
updated. For a bind statement �v : k ← x� (Eq. 10), all three components of the
state are updated as determined by the expression semantics ae. The trace is
changed only in response to a �recv(v1)� expression (Eq. 8), and a fresh value
is consumed only in response to a �frsh� expression (Eq. 9). Sequences of state
transitions are tied together in the natural way by as∗ (Eqs. 15 and 16). The
asret predicate (Eq. 17) ensures that the final statement in a procedure is a
return statement, and that the outputs of the procedure are correctly retrieved
from the final environment.

Definition 4 (Procedure execution). Let p = 〈(v0, k0), . . . , (vn−1, kn−1)〉
and i = 〈i0, . . . , in−1〉. Execution e = eY (c, i, o, u) is an execution of procedure
x = x(p, s), written exec(x, e), iff

1. for all j < n, chk(ij , kj), and
2. asret(E, c, u, s, o), where E = ∅[v0 �→ i0] · · · [vn−1 �→ in−1].

See Eq. 11 for the definition of chk.

Roletran generates the following procedures for the Unilateral Protocol.

Example 5 (Unilateral Protocol Procedures)

initp = x(〈(v0, C), (v1, A)〉,
v2 : D ← frsh
v3 : M ← encr(v2, v1)
send(v0, v3)
v4 : D ← recv(v0)
v2 ≈ v4
return(v2))

respp = x(〈(v0, C), (v1, I)〉,
v2 : M ← recv(v0)
v3 : D ← decr(v2, v1)
send(v0, v3)
return(v3))

Cryptographic Protocol Analysis and Compilation 365

The execution inite = eh:C,n:D,k:A(〈+[h, {|n|}k],−[h, n]〉, 〈h, k〉, 〈n〉, 〈n〉) is an
execution of procedure initp. The state transitions caused by this execution of
procedure initp are shown in Fig. 4.

4.1 Correctness

Definition 6 (Liveness). Procedure x is live for role r, iff there exists an exe-
cution e such that

1. e is a run of r, and
2. e is an execution of x.

Definition 7 (Safety). Procedure x is safe for role r, iff when

1. e is an execution of x, then
2. e is a run of r.

Definition 8 (Correctness). Procedure x correctly implements role r, iff x is
live and safe for r.

The Coq scripts that come with Roletran automatically prove that the Uni-
lateral Protocol procedures it generates correctly implement their respective
roles.

Consider the case in which Roletran mistakenly omitted the sameness test
(v2 ≈ v4) in the initiator procedure. The Coq scripts would determine that
ec:C,n,n′:D,k:A(〈+[h, {|n|}k],−[h, n′]〉, 〈h, k〉, 〈n〉, 〈n〉) is an execution of procedure
initp′, but note that this execution violates the safety condition. The safety
condition ensures that runs of a collection of procedures that correctly implement
the roles of a protocol achieve the security goals of the protocol.

5 A Runtime with Probabilistic Encryption

This section presents message algebras, called concrete message algebras, that
are very similar to the ones used by the abstract execution semantics. The only
difference is the way in which they model encryption. The signature used by the
previous algebras has one operation for encryption, {|(·)|}(·) (See Fig. 1), which
suggests that two encryptions are the same if the plaintext and the key used to
construct them are the same. This is not true for implementations of encryption
in actual use. Instead, some randomness is added to an encryption during its
construction in such a way that knowledge of the randomness is not needed to
recover the plaintext by someone in possession of the decryption key.

366 J. D. Ramsdell

Fig. 5. Concrete crypto algebra signature

Figure 5 shows the signature used for concrete algebras that model proba-
bilistic encryption. This signature features a family of encryption operations,
{‖(·)‖}i

(·), one for each natural number i. The natural number is meant to rep-
resent the randomness used while creating the encryption. In concrete algebras,
two encryptions created with the same plaintext and key are equal only if they
were created using the same random value.

The algebra of interest is the order-sorted quotient term algebra generated by
a set of declarations Y . The message algebra CAlgY is the carrier set for sort M.
The definitions of traces, roles, and executions, extend to concrete algebras in
the obvious ways.

Definition 9 (Forgetful function). Let F : CAlgY → AlgY be the obvious
function that forgets the randomness used to create encryptions.

Lemma 10. For x ∈ AlgY , if x is encryption free (enc free x), then there
exists a unique y ∈ AlgY such that F(y) = x.

Proof. By induction on the structure of y.

The lemma used in proofs follows.

Lemma 11. For x, y ∈ CAlgY , if enc free(F(x)) and F(x) = F(y), then x = y.

6 Concrete Execution Semantics

The concrete execution semantics is analogous to the abstract execution seman-
tics except that references to message algebras are replaced with references to
concrete message algebras. There is one big exception. When executing an encr
expression, there must be a source of randomness for use in creating an encryp-
tion. To provide a source of fresh basic values, the abstract execution seman-
tics threads a sequence of values through state changes. In the concrete execu-
tion semantics, a sequence of natural numbers γ is also threaded through state
changes and used to create encryptions.

E(v1) = t1 E(v2) = t2
ce(E, c, u, ι :: γ, �encr(v1, v2)�, {‖t1‖}ι

t2 , c, u, γ)
(18)

Cryptographic Protocol Analysis and Compilation 367

E(v1) = t1 E(v2) = t2
ce(E, c, u, 〈〉, �encr(v1, v2)�, {‖t1‖}0t2 , c, u, 〈〉) (19)

Equation 19 handles the case in which the source of randomness has been
exhausted.

Other than the case for the encr expression, the definition of the concrete exe-
cution semantics follows that of the abstract execution semantics in the obvious
ways.

Definition 12 (Concrete procedure execution)
Assume p = 〈(v0, k0), . . . , (vn−1, kn−1)〉 and i = 〈i0, . . . , in−1〉. Execution e =
eY (c′, i′, o′, u′) is a concrete execution of procedure x = x(p, s) with random-
ness γ, written cexec(x, e, γ), iff

1. for all j < n, chk(F(ij), kj);
2. csret(E, c, u, γ, s, o), where E = ∅[v0 �→ i0] · · · [vn−1 �→ in−1];
3. c′ is the result of mapping c using F ;
4. i′ = F ◦ i;
5. o′ = F ◦ o; and
6. u′ = F ◦ u.

7 Relating Execution Semantics

The proofs of the theorems stated in this section were performed using Coq and
the proof scripts are available in the distribution of cpsa [8].

Theorem 13 (Faithfulness). cexec(x, e, γ) implies exec(x, e).

The proof of faithfulness is tedious but straightforward. The forgetful func-
tion in Definition 9 is used to map items in the concrete semantics to items in
the abstract semantics, and then the proofs go through as expected.

Theorem 14 (Adequacy). exec(x, e) implies cexec(x, e, γ).

The proof of adequacy is tricky. Where there is a sequence of state transitions
in the abstract execution semantics, one must find a corresponding sequence
in the concrete execution semantics. During both sequences, an event in the
trace is consumed when a send statement or a receive expression is encountered.
The case of a receive expression is the easy situation. The received term in the
complex algebra can be any term as long as applying the forgetful function
to it produces the received term in the abstract algebra. However, the case
of a send statement is quite different. The transmitted term in the complex
algebra must agree with what is in the environment associated with the send
statement’s message variable. And the term in the environment depends on the
particular sequence of random values consumed up to this point in the execution.
Engineering a proof that maintains this property is what makes the proof tricky.

The proof of adequacy makes demands on both the abstract and concrete
execution semantics. The proof depends on the fact that the following terms
must not contain an encryption,

368 J. D. Ramsdell

– the key used during a decryption (see Eq. 7),
– the terms compared with a sameness test (see Eq. 12), and
– the terms compared with an inverse key predicate test (see Eq. 13).

The lack of encryptions allow the use of Lemma 11.
With these checks in place, the means we use to validate compiler

input/output pairs correctly handles probabilistic encryption.

8 Epilogue

The development of the Roletran compiler is part of a project aimed at address-
ing the fact that there are systems built on aging software components with
questionable security. An approach to protecting such systems is to isolate each
component, and mediate communication between the components using trusted
software that achieves desired security goals. Verified implementations of proto-
cols is a key component to our approach. Members of this project include Ian
D. Kretz and Dan J. Dougherty. The project is led by Joshua D. Guttman.

The project has developed a runtime system in Rust for code generated by
Roletran, and several test protocols have been analyzed and then translated
into running code, the simplest of which is the Unilateral Protocol. The project
has another compiler that compiles protocols that make use of state. Future
work might include the construction of a verified runtime system for Roletran
generated code.

The addition of channels to cpsa was due to yet another successful collabo-
ration between Joshua and the author.

Acknowledgement. Paul D. Rowe provided valuable comments that improved this
paper.

References

1. The Coq proof assistant reference manual (2021). http://coq.inria.fr
2. Bhargavan, K., Corin, R., Deniélou, P., Fournet, C., Leifer, J.J.: Cryptographic

protocol synthesis and verification for multiparty sessions. In: Proceedings of the
22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson,
New York, USA, 8–10 July 2009, pp. 124–140. IEEE Computer Society (2009).
https://doi.org/10.1109/CSF.2009.26

3. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650

4. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992). https://citeseer.ist.psu.edu/goguen92ordersorted.html

5. Guttman, J.D., Herzog, J.C., Ramsdell, J.D., Sniffen, B.T.: Programming crypto-
graphic protocols. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705,
pp. 116–145. Springer, Heidelberg (2005). https://doi.org/10.1007/11580850 8

6. Guttman, J.D., Wand, M.: VLISP: a verified implementation of scheme. Lisp Sym-
bolic Comput. 8, 5–32 (1995). https://doi.org/10.1007/BF01128406

http://coq.inria.fr
https://doi.org/10.1109/CSF.2009.26
https://doi.org/10.1109/TIT.1983.1056650
https://citeseer.ist.psu.edu/goguen92ordersorted.html
https://doi.org/10.1007/11580850_8
https://doi.org/10.1007/BF01128406

Cryptographic Protocol Analysis and Compilation 369

7. Liskov, M.D., Rowe, P.D., Thayer, F.J.: Completeness of CPSA. Technical
report, MTR110479, The MITRE Corporation (2011). https://www.mitre.org/
publications/technical-papers/completeness-of-cpsa

8. Ramsdell, J.D., Guttman, J.D.: CPSA4: A cryptographic protocol shapes analyzer.
The MITRE Corporation (2018). https://github.com/mitre/cpsaexp

9. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999). http://content.iospress.com/
articles/journal-of-computer-security/jcs117

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.mitre.org/publications/technical-papers/completeness-of-cpsa
https://www.mitre.org/publications/technical-papers/completeness-of-cpsa
https://github.com/mitre/cpsaexp
http://content.iospress.com/articles/journal-of-computer-security/jcs117
http://content.iospress.com/articles/journal-of-computer-security/jcs117
http://creativecommons.org/licenses/by/4.0/

	Cryptographic Protocol Analysis and Compilation Using CPSA and Roletran
	1 Introduction
	2 Message Algebras
	3 Strand Spaces with Channels
	3.1 Unilateral Protocol Example
	3.2 Channel Assumptions

	4 Abstract Execution Semantics
	4.1 Correctness

	5 A Runtime with Probabilistic Encryption
	6 Concrete Execution Semantics
	7 Relating Execution Semantics
	8 Epilogue
	References

