
CPSA Overview

John D. Ramsdell Joshua D. Guttman
The MITRE Corporation

May 24, 2012

Enclosed is a brief overview of CPSA, along with a description of CPSA’s
support for the rely-guarantee method. The message terms 〈term〉 used by
CPSA are a straightforward representation of terms using Lisp-style, prefix
notation.

A subset of the terms are called atoms. Atoms belong to the base sorts
name, text, data, skey, akey. Syntactically, atomic terms may be ei-
ther symbols (i.e., identifiers) or atomic-sorted function applications such as
(pubk a). Even though an atom as a term may have terms within it, a
receiver of an atom is not allowed to extract terms that occur in it. This
reflects the fact that the reception of the atom (invk k), the inverse of some
asymmetric key k, does not allow the receiver to construct k.

Non-atomic terms are constructed by applications of encryption (enc),
hashing (hash), and pairing (cat), where n-ary concatenation is parsed right-
associatively. The second argument of an encryption is the key. Encryption
may also be written in an n-ary form where the last argument is the key and
the arguments preceding it are implicitly concatenated. Hashing also may
written in an n-ary form and its arguments are implicitly concatenated.

A term carries one of its subterms if the possession of the right set of
keys allows the extraction of the subterm. The carries relation is the least
relation such that (1) t carries t, (2) (enc t0 t1) carries t if t0 carries t, and
(3) (cat t0 t1) carries t if t0 or t1 carries t. Note that (enc t0 t1) does not
carry t1 unless (anomalously) t0 carries t1.

c© 2009 The MITRE Corporation. Permission to copy without fee all or part of
this material is granted provided that the copies are not made or distributed for direct
commercial advantage, this copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of The MITRE Corporation.

1

1 Protocols

A protocol is a set of roles.

(defprotocol 〈sym〉 basic 〈role〉+)

The symbol 〈sym〉 names the protocol. The symbol basic identifies the term
algebra used to specify messages in roles.

A role has the form:

(defrole 〈sym〉 (vars 〈decl〉∗)
(trace 〈event〉+)
(non-orig 〈non〉∗)?

(pen-non-orig 〈non〉∗)?

(uniq-orig 〈atom〉∗)?

〈annos〉)

〈non〉 ::= 〈atom〉 | (〈height〉 〈atom〉)

Non-terminal 〈sym〉 is an S-expression symbol that names the role. A 〈decl〉
is a list of variable symbols followed by a sort symbol. The trace is a
sequence of message events, each indicating a message to be transmitted or
received. The syntax used for a message event 〈event〉 has one of two forms,
(send 〈term〉) or (recv 〈term〉). The length of a role is the length of its
trace, and must be positive. The remaining components of a role will be
described later.

A term originates in a trace if it is carried in some event and the first
event in which it is carried is a sending term. A term is acquired by a trace
if it first occurs in a receiving term and is also carried by that term.

2 Executions

An execution of a protocol may involve any number of strands, each convey-
ing either regular or adversarial behavior. Thus, each strand is an instance of
some role. For CPSA input and output, a strand is specified by the following
form:

(defstrand 〈sym〉 〈int〉 〈maplet〉∗)

2

The symbol names the role, 〈int〉 is the height which must be positive and no
greater than the role’s length, and the remainder determines a substitution
from role variables to terms.

〈maplet〉 ::= (〈sym〉 〈term〉)

The trace associated with the specified behavior is the result of truncating
the role’s trace so it agrees with the height, and applying the substitution
(〈maplet〉∗).

A strand’s behavior includes inherited origination assumptions. When
a role assumes atom a is uniquely originating using the uniq-orig form,
applying the substitution (〈maplet〉∗) to a produces an inherited uniquely
originating atom. A role atom assumed to be non-originating using the
non-orig or pen-non-orig form is inherited similarly. For a non-originating
assumption, a strand height may be associated with an atom. In this case, a
non-originating assumption is inherited by strands that meet or exceed the
height constraint. Note that the definition of a uniquely originating atom
and a non-originating atom in an execution is still to come. Also, the two
flavors of non-origination assumptions have yet to be described.

A strand in an execution is identified by a natural number. To describe an
execution, the behavior of each participant is listed sequentially, and position
of the defstrand form in the list determines the strand’s identifier. Zero-
based indexing is used, so zero identifies the first strand.

A messaging event in an execution occurs at a node, which is a pair of
natural numbers. The first number is the strand’s identifier. The second
number is the position of an event in the trace of the strand, once again
using zero-based indexing. Thus node (1 1) in

(defstrand r1 3 (a b) (b a))

(defstrand r2 2 (x a) (y a) (z b))

names the last event in the last strand. The term is the result of instantiating
the second event in role r2’s trace using the substitution ((x a) (y a) (z

b)).
Message exchanges are part of an execution. Each exchange is described

by a pair of nodes. The first node must name a sending term, and the second
node must name a receiving term. In an execution, the two terms are the
same. Furthermore, for each receiving term in a strand’s trace, there is a
unique node that transmits its term. In other words, all message receptions
are explained by transmissions within the execution.

3

In an execution, a uniquely originating atom originates in the trace of
exactly one strand. An inherited uniquely originating atom must originate
in the trace of its strand. CPSA uses uniquely originating atoms to model
freshly generated nonces used in many protocols.

A non-originating atom is carried by no trace of any strand in an execu-
tion, and it or its inverse is the key of an encryption in one of those traces.
The inherited non-origination atoms must satisfy this property too.

Strands in executions represent both adversarial and non-adversarial be-
haviors. A strand that is an instance of a protocol role is non-adversarial,
and is called regular. A strand that represents adversarial behavior is called
a penetrator strand.

The roles that define adversary behavior codify the basic abilities that
make up the Dolev-Yao model. They include transmitting an atom such as
a name or a key; transmitting a tag; transmitting an encrypted message af-
ter receiving its plain text and the key; and transmitting a plain text after
receiving ciphertext and its decryption key. The adversary can also concate-
nate two messages, or separate the pieces of a concatenated message. Since
a penetrator strand that encrypts or decrypts must receive the key as one
of its inputs, keys used by the adversary—compromised keys—have always
been transmitted by some strand. The basic adversary roles are built into
CPSA.

A penetrator non-originating atom may be carried, and it or its inverse
must occur in some trace. The inherited penetrator non-origination atoms
must satisfy this property too. A penetrator non-originating assumption
asserts that the adversary is not allowed to originate the atom.

3 Skeletons

CPSA never directly represents adversarial behavior. Instead, a skeleton is
used. A skeleton represents regular behavior that might make up part of
an execution. A skeleton is specified in CPSA output using a defskeleton

form.

(defskeleton 〈sym〉 (vars 〈decl〉∗)
〈defstrand〉+
(precedes 〈pair〉∗)?

(non-orig 〈atom〉∗)?

(pen-non-orig 〈atom〉∗)?

4

(uniq-orig 〈atom〉∗)?)

The symbol names the protocol used by its participants. The regular strands
are specified as they are in an execution. The precedes form defines a binary
relation on nodes (〈pair〉 ::= (〈node〉 〈node〉)). As in an execution, the
first node names a sending term and the second term names a receiving
term. Unlike an execution, the pair of nodes in the relation need not agree on
their message term. Two nodes are related if the sending event precedes the
reception reception event, as an execution it represents may include events
in between.

The final three additional components of a skeleton are a set of non-
originating atoms, a set of penetrator non-originating atoms, and a set of
uniquely originating atoms. To be a skeleton, each uniquely originating atom
must originate in at most one strand in the skeleton, and each non-originating
atom must never be carried by some event in the skeleton and every variable
that occurs in the atom must occur in some event, and every variable that
occurs in each penetrator non-originating atom must occur in some event.
Furthermore, for each uniquely originating atom that originates in the skele-
ton, the node relation must ensure that reception nodes that carry the atom
follow the node of its origination.

One special skeleton is associated with each execution. It summarizes
the regular behavior of the execution. It is derived from the execution by
enriching its node relation to contain all node orderings implied by transitive
closure, deleting all strands and nodes that refer to penetrator behavior, and
then performing the transitive reduction on the resulting node relation. The
set of uniquely originating atoms is the set of terms that originate on exactly
one strand in the execution, and are carried in a term of a regular strand.
The set of non-originating atoms is the union of two sets. One set contains
each term that is used as an encryption or decryption key in some term in
the execution, but is not carried by any term. The other set contains the
terms specified by non-origination assumptions in roles. If a realized skeleton
instance maps all of the variables that occur in one of its non-originating role
terms, the mapped term is a member of the skeleton’s set of non-originating
terms. A skeleton is realized if it summarizes the behavior of some execution.

5

3.1 Preskeletons

Preskeletons are used to pose problems for CPSA to solve. A preskeleton
is similar to a skeleton except atoms assumed to uniquely originate may
originate in more than one strand, and the node relation need not ensure
that reception nodes that carry the atom follow some node of origination.
Experience has shown that it is more natural to specify some problems in a
form that doesn’t satisfy all the properties of a skeleton. If CPSA cannot
immediately convert its input into a skeleton, an error is signal. With the
exception of the restatement of the original problem, all preskeletons printed
by CPSA are skeletons. A problem statement is called a scenario, and the
converted skeleton is called the scenario skeleton.

3.2 Shapes

Given a scenario skeleton, CPSA determines whether there is an execution
containing the strands in the skeleton, and satisfying its origination assump-
tions. Usually an execution contains additional regular strands, as well as
adversary behavior. A major part of what CPSA does is to find all additional
regular strands that are necessary to extend the scenario to an execution—a
realized skeleton. If a realized skeleton is most-general, in the sense that
there is no other realized skeleton that can be instantiated to it by merg-
ing nodes or atoms, then it is called a shape. CPSA finds all shapes for a
scenario.

4 Listeners

In addition to the roles specified in a protocol, for each term t, a regular
strand may be an instance of a so-called listener role with the trace (recv t)
(send t). There are no non-originating or uniquely originating atoms asso-
ciated with a listener role. Listener behavior is specified with:

(deflistener 〈term〉)

A listener strand is used in a skeleton to assert that a term t is derivable
by the adversary, unprotected by encryption. Hence it is used to test for
compromise of a term. The term is protected if the resulting skeleton is un-
realizable. Otherwise, CPSA will find a shape that shows how the adversary
accesses t.

6

〈annos〉 ::= (annotations 〈term〉 (〈int〉 〈form〉)∗)
〈form〉 ::= (〈sym〉 〈fterm〉∗) | (not 〈form〉)

| (and 〈form〉∗) | (or 〈form〉∗)
| (implies 〈form〉∗ 〈form〉)
| (iff 〈form〉 〈form〉)
| (says 〈term〉 〈form〉)
| (forall (〈decl〉∗) 〈form〉)
| (exists (〈decl〉∗) 〈form〉)

〈fterm〉 ::= 〈term〉 | (〈sym〉 〈fterm〉∗)

Table 1: Annotation Syntax

5 Annotations

To be analyzed, each role in a protocol must include an annotations form,
as defined in Table 1. The 〈term〉 just after the annotations symbol is a
role atom that, when instantiated, is the principal associated with the strand
in the shape. A principal may be a key.

What follows is sequences of pairs. The integer gives the position of
the event in the trace that is annotated by the formula, using zero-based
indexing. Thus, each formula is associated with a node. Nodes for which no
formula is specified are implicitly defined to be the trivial formula (and) for
truth. Use (or) for falsehood.

The language of formulas is first-order logic extended with a modal “says”
operator. Formula terms may include function symbols that are not part of
a protocol’s message signature.

On output, each shape contains an annotations form and an obligations

form. The annotations form presents every non-trivial formula derived from
the protocol. The obligations form presents every non-trivial formula that
must be true if the shape is sound.

7

