-- | Prufer domains are non-Noetherian analogues of Dedekind domains. That is -- integral domains in which every finitely generated ideal is invertible. This -- implementation is mainly based on: -- -- http:\/\/hlombardi.free.fr\/liens\/salouThesis.pdf -- module Algebra.Structures.PruferDomain ( PruferDomain(..), propCalcUVW, propPruferDomain , calcUVWT, propCalcUVWT, fromUVWTtoUVW , computePLM_PD , invertIdeal ) where import Test.QuickCheck import Data.List (nub) import Algebra.Structures.IntegralDomain import Algebra.Structures.Coherent import Algebra.Ideal import Algebra.Matrix ------------------------------------------------------------------------------- -- | Prufer domain class IntegralDomain a => PruferDomain a where -- a b u v w calcUVW :: a -> a -> (a,a,a) -- | Property specifying that: -- au = bv and b(1-u) = aw propCalcUVW :: (PruferDomain a, Eq a) => a -> a -> Bool propCalcUVW a b = a <*> u == b <*> v && b <*> (one <-> u) == a <*> w where (u,v,w) = calcUVW a b propPruferDomain :: (PruferDomain a, Eq a) => a -> a -> a -> Property propPruferDomain a b c | propCalcUVW a b = propIntegralDomain a b c | otherwise = whenFail (print "propCalcUVW") False -- | Alternative characterization of Prufer domains, given a and b compute u, v, -- w, t such that: -- -- ua = vb && wa = tb && u+t = 1 calcUVWT :: PruferDomain a => a -> a -> (a,a,a,a) calcUVWT a b = (x,y,z,one <-> x) where (x,y,z) = calcUVW a b propCalcUVWT :: (PruferDomain a, Eq a) => a -> a -> Bool propCalcUVWT a b = u <*> a == v <*> b && w <*> a == t <*> b && u <+> t == one where (u,v,w,t) = calcUVWT a b -- | Go back to the original definition (yes the name is stupid :P). fromUVWTtoUVW :: PruferDomain a => (a,a,a,a) -> (a,a,a) fromUVWTtoUVW (u,v,w,t) = (u,v,w) ------------------------------------------------------------------------------- -- Coherence -- | Compute a principal localization matrix for an ideal in a Prufer domain. computePLM_PD :: (PruferDomain a, Eq a) => Ideal a -> Matrix a computePLM_PD (Id [_]) = matrix [[one]] computePLM_PD (Id [a,b]) = let (u,v,w,t) = calcUVWT b a in M [ Vec [u,v], Vec [w,t]] computePLM_PD (Id xs) = matrix a where -- Use induction hypothesis to construct a matrix for n-1: x_is = init xs b = unMVec $ computePLM_PD (Id x_is) m = length b - 1 -- Let s_i be b_ii: s_is = [ (b !! i) !! i | i <- [0..m]] -- Take out x_n: x_n = last xs -- Compute (u_i, v_i, w_i, t_i) for : uvwt_i = [ calcUVWT x_n x_i | x_i <- x_is ] -- Take out all u, v, w, and t: u_is = [ u_i | (u_i,_,_,_) <- uvwt_i ] v_is = [ v_i | (_,v_i,_,_) <- uvwt_i ] w_js = [ w_i | (_,_,w_i,_) <- uvwt_i ] t_is = [ t_i | (_,_,_,t_i) <- uvwt_i ] -- COMPUTE a_ij for 1 <= i,j < n -- i = row -- j = column a_ij = [ [ if i == j then (s_is !! i) <*> (u_is !! i) else (u_is !! i) <*> (b !! i !! j) | j <- [0..m] ] | i <- [0..m] ] -- COMPUTE a_nn a_nn = sumRing $ zipWith (<*>) s_is t_is -- COMPUTE a_ni for 1 <= i < n -- THIS IS THE LAST ROW a_ni = [ sumRing [ (b !! j !! i) <*> (w_js !! j) | j <- [0..m] ] | i <- [0..m] ] -- COMPUTE a_in for 1 <= i < n -- THIS IS THE LAST COLUMN a_in = [ (s_is !! i) <*> (v_is !! i) | i <- [0..m] ] -- ASSEMBLE EVERYTHING a = [ x ++ [y] | (x,y) <- zip a_ij a_in ] ++ [a_ni ++ [a_nn]] -- | Ideal inversion. Given I compute J such that IJ is principal. -- Uses the principal localization matrix for the ideal. invertIdeal :: (PruferDomain a, Eq a) => Ideal a -> Ideal a invertIdeal xs = let a = unMVec $ computePLM_PD xs -- Pick out the first column a_njs = [ head (a !! j) | j <- [0..length a - 1]] in Id a_njs -- XXX: This is buggy at the moment... Witnesses is not correctly computed! -- | Compute the intersection of I and J by: -- -- (I ∩ J)(I + J) = IJ => (I ∩ J)(I + J)(I + J)' = IJ(I + J)' -- intersectionP :: (PruferDomain a, Eq a) => Ideal a -> Ideal a -> (Ideal a,[[a]],[[a]]) intersectionP (Id is) (Id js) = case foldr combine ([],[],[]) int of ([],_,_) -> zeroIdealWitnesses is js (xs,ys,zs) -> (Id xs,ys,zs) where -- Compute the inverse of I+J: inv = fromId $ invertIdeal (Id is `addId` Id js) is' = one : tail is -- Compute lengths li = length is' lj = length js -- Compute the intersection with witnesses and remove all zeroes and duplicates int = nub [ (i <*> j <*> k, addZ m li (j <*> k), addZ n lj (i <*> k)) | (m,i) <- zip [0..] is' , (n,j) <- zip [0..] js , k <- inv , i <*> j <*> k /= zero ] l = length int addZ n l x = replicate n zero ++ (x:replicate (l-n-1) zero) combine (x,y,z) (xs,ys,zs) = (x:xs,y:ys,z:zs) -- intersectionPD :: (PruferDomain a, Eq a) => Ideal a -> Ideal a -> Ideal a intersectionPD i@(Id is) j@(Id js) = i `mulId` k where plm = unMVec $ computePLM_PD (i `addId` j) n = length is - 1 m = n + length js k = Id [ plm !! i !! j | j <- [n+1..m], i <- [0..m]] -- k = [ "a" ++ show i ++ show j | j <- [n+1..m], i <- [0..m]] solvePD :: (PruferDomain a, Eq a) => Vector a -> Matrix a solvePD x = solveWithIntersection x intersectionP -- instance (PruferDomain a, Eq a) => Coherent a where -- solve x = solveWithIntersection x intersectIdeals