{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 707 {-# LANGUAGE StandaloneDeriving, DeriveDataTypeable, Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Control.Comonad.Trans.Store -- Copyright : (C) 2008-2013 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- -- -- The store comonad holds a constant value along with a modifiable /accessor/ -- function, which maps the /stored value/ to the /focus/. -- -- This module defines the strict store (aka state-in-context/costate) comonad -- transformer. -- -- @stored value = (1, 5)@, @accessor = fst@, @resulting focus = 1@: -- -- >>> :{ -- let -- storeTuple :: Store (Int, Int) Int -- storeTuple = store fst (1, 5) -- :} -- -- Add something to the focus: -- -- >>> :{ -- let -- addToFocus :: Int -> Store (Int, Int) Int -> Int -- addToFocus x wa = x + extract wa -- :} -- -- >>> :{ -- let -- added3 :: Store (Int, Int) Int -- added3 = extend (addToFocus 3) storeTuple -- :} -- -- The focus of added3 is now @1 + 3 = 4@. However, this action changed only -- the accessor function and therefore the focus but not the stored value: -- -- >>> pos added3 -- (1,5) -- -- >>> extract added3 -- 4 -- -- The strict store (state-in-context/costate) comonad transformer is subject -- to the laws: -- -- > x = seek (pos x) x -- > y = pos (seek y x) -- > seek y x = seek y (seek z x) -- -- Thanks go to Russell O'Connor and Daniel Peebles for their help formulating -- and proving the laws for this comonad transformer. ---------------------------------------------------------------------------- module Control.Comonad.Trans.Store ( -- * The Store comonad Store, store, runStore -- * The Store comonad transformer , StoreT(..), runStoreT -- * Operations , pos , seek, seeks , peek, peeks , experiment ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Control.Comonad import Control.Comonad.Hoist.Class import Control.Comonad.Trans.Class import Data.Functor.Identity import Data.Semigroup #ifdef __GLASGOW_HASKELL__ import Data.Typeable -- $setup -- >>> import Data.Tuple (swap) #if __GLASGOW_HASKELL__ >= 707 deriving instance Typeable StoreT #else instance (Typeable s, Typeable1 w) => Typeable1 (StoreT s w) where typeOf1 dswa = mkTyConApp storeTTyCon [typeOf (s dswa), typeOf1 (w dswa)] where s :: StoreT s w a -> s s = undefined w :: StoreT s w a -> w a w = undefined instance (Typeable s, Typeable1 w, Typeable a) => Typeable (StoreT s w a) where typeOf = typeOfDefault storeTTyCon :: TyCon #if __GLASGOW_HASKELL__ < 704 storeTTyCon = mkTyCon "Control.Comonad.Trans.Store.StoreT" #else storeTTyCon = mkTyCon3 "comonad-transformers" "Control.Comonad.Trans.Store" "StoreT" #endif {-# NOINLINE storeTTyCon #-} #endif #endif type Store s = StoreT s Identity -- | Create a Store using an accessor function and a stored value store :: (s -> a) -> s -> Store s a store f s = StoreT (Identity f) s runStore :: Store s a -> (s -> a, s) runStore (StoreT (Identity f) s) = (f, s) data StoreT s w a = StoreT (w (s -> a)) s runStoreT :: StoreT s w a -> (w (s -> a), s) runStoreT (StoreT wf s) = (wf, s) instance Functor w => Functor (StoreT s w) where fmap f (StoreT wf s) = StoreT (fmap (f .) wf) s instance (ComonadApply w, Semigroup s) => ComonadApply (StoreT s w) where StoreT ff m <@> StoreT fa n = StoreT ((<*>) <$> ff <@> fa) (m <> n) instance (Applicative w, Monoid s) => Applicative (StoreT s w) where pure a = StoreT (pure (const a)) mempty StoreT ff m <*> StoreT fa n = StoreT ((<*>) <$> ff <*> fa) (mappend m n) instance Comonad w => Comonad (StoreT s w) where duplicate (StoreT wf s) = StoreT (extend StoreT wf) s extend f (StoreT wf s) = StoreT (extend (\wf' s' -> f (StoreT wf' s')) wf) s extract (StoreT wf s) = extract wf s instance ComonadTrans (StoreT s) where lower (StoreT f s) = fmap ($ s) f instance ComonadHoist (StoreT s) where cohoist l (StoreT f s) = StoreT (l f) s -- | Read the stored value -- -- >>> pos $ store fst (1,5) -- (1,5) -- pos :: StoreT s w a -> s pos (StoreT _ s) = s -- | Set the stored value -- -- >>> pos . seek (3,7) $ store fst (1,5) -- (3,7) -- -- Seek satisfies the law -- -- > seek s = peek s . duplicate seek :: s -> StoreT s w a -> StoreT s w a seek s ~(StoreT f _) = StoreT f s -- | Modify the stored value -- -- >>> pos . seeks swap $ store fst (1,5) -- (5,1) -- -- Seeks satisfies the law -- -- > seeks f = peeks f . duplicate seeks :: (s -> s) -> StoreT s w a -> StoreT s w a seeks f ~(StoreT g s) = StoreT g (f s) -- | Peek at what the current focus would be for a different stored value -- -- Peek satisfies the law -- -- > peek x . extend (peek y) = peek y peek :: Comonad w => s -> StoreT s w a -> a peek s (StoreT g _) = extract g s -- | Peek at what the current focus would be if the stored value was -- modified by some function peeks :: Comonad w => (s -> s) -> StoreT s w a -> a peeks f ~(StoreT g s) = extract g (f s) -- | Applies a functor-valued function to the stored value, and then uses the -- new accessor to read the resulting focus. -- -- >>> let f x = if x > 0 then Just (x^2) else Nothing -- >>> experiment f $ store (+1) 2 -- Just 5 -- >>> experiment f $ store (+1) (-2) -- Nothing experiment :: (Comonad w, Functor f) => (s -> f s) -> StoreT s w a -> f a experiment f (StoreT wf s) = extract wf <$> f s