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Coincident root loci

Consider a degree m homogeneous binary form f ∈ SymmV ∗ on a
two dimensional complex vector space V ∼= C2. Taking the roots
of the equation f(z) = 0 gives us a bijection between PSymmV ∗

and the space of unordered multisets of m points in P1 = PV .

This space is naturally stratified by specifying the multiplicities of
the roots: Given a partition µ = (µ1, . . . , µn) of m, define
Xµ ⊂ PSymmV ∗ be the set of forms which have n distinct roots,
with multiplicities µ1, µ2, . . . , µn.

PSymmV ∗ =
∐
µ`m

Xµ

We call the loci Xµ coincident root loci.1

1also called: multiple root loci, pejorative manifolds, discriminant strata,
factorization manifolds, λ-Chow varieties, etc.



The goal: Compute cSM(Xµ)

Our goal here is to compute the GL2-equivariant Chern-Schwartz-
MacPherson classes cSM(Xµ) ∈ H∗GL2

(PSymmV ∗) of the loci Xµ.

Motivation:

I it is a very natural question (already studied by Hilbert, Schubert)

I it has lots of potential applications in enumerative geometry

I we want to see more worked-out examples anyway

Theorem (Hilbert):

deg( ĎXµ) =
n!∏
i ei!

·
∏
i

µi

where µ = (µ1, . . . , µn) = (1e1 , 2e2 , . . . , rer).



Previous results

I Schubert (1886): some enumerative consequences for some particular µ-s

I Hilbert (1887): the degree: deg( ĎXµ) ∈ N+

I Aluffi (1998): the non-equivariant CSM:

cSM(Xµ) ∈ H∗(Pm) = Z[h] / hm+1

I Fehér, Némethi, Rimányi (∼2003; published in 2006): the equivariant
dual via localization

[cone(Xµ)] ∈ H∗GL2(Cm+1) = Z[α, β]S2 = Z[c1, c2]

I Kőműves (2003): the same equivariant dual via restriction equations

Remarks:

I The dual class is the lowest degree part of the CSM class

I The projective (Xµ ⊂ Pm) and the affine (cone(Xµ) ⊂ Cm+1) versions
are equivalent

I The localization and the restriction methods are secretly the same (in this
particular case)



Software
There is a software package implementing all computations described here, and
also those in previous works. It is available at:

http://hackage.haskell.org/package/coincident-root-loci

It is written in the Haskell programming language. Installation:

1. install the Haskell Platform (http://www.haskell.org/platform)

2. then type:

cabal upgrade

cabal install coincident-root-loci

Example (in the interactive shell ghci):

ghci> pretty $ convertGam chernToSchur

$ umbralClosedCSM $ toPartition [4,3,1,1]

"1694520*s[3,2] + 13548870*s[3,3] + 1006344*s[4,1] + 19483740*s[4,2] +

93239748*s[4,3] + 190659015*s[4,4] + 181440*s[5] + 6904440*s[5,1] +

...

8280*g^7*s[1,1] + 6960*g^7*s[2] + 45*g^8 + 405*g^8*s[1] + 10*g^9"



Ambient CSM classes

We are always working in the following situation: j : X ⊂M is a possibly
singular, G-invariant locally closed subvariety in a smooth ambient
variety M .

With some abuse of notation, in this context by cSM(X) we always mean
the Poincaré dual of the pushforward of the CSM class from X to M :

cSM(X ⊂M)︸ ︷︷ ︸
our version

:= Dual
[
j∗ cSM(X)︸ ︷︷ ︸

standard

]
∈ H∗G(M)

This seems to be the natural thing to do in our setting, when M is
stratified by invariant subvarieties. It also fits better with the
applications. Finally, it’s much simpler to work in H∗G(M) which is
typically very well understood. (Working in cohomology instead of
homology is just personal preference).

Note that Aluffi also came to this conclusion, from different

considerations.2

2P. Aluffi: Characteristic classes of singular varieties; Warsaw lecture notes



Projective vs. affine

We have three different versions of CSM classes here:

I projective, non-equivariant classes: cSM(Xµ ⊂ Pm) ∈ H∗(Pm)

I projective, equivariant classes: cequiv
SM (Xµ ⊂ Pm) ∈ H∗GL2

(Pm)

I affine, equivariant classes: cequiv
SM (cone(Xµ) ⊂ Cm+1) ∈ H∗(BGL2)

They are related by the substitutions:

cSM(Xµ) = cequiv
SM (Xµ) |{α 7→0, β 7→0}

cequiv
SM (cone(Xµ)) = cequiv

SM (Xµ) |{γ 7→0}

cequiv
SM (Xµ) = cequiv

SM (cone(Xµ)) |{α 7→α+γ/m, β 7→β+γ/m}

Note that in the affine case, there is an extra stratum X0 = {0} ⊂ Cm+1.
It’s CSM class is:

cSM(X0) =
[
{0}
]

=

m∏
i=0

(
iα+ (m− i)β︸ ︷︷ ︸

wi

)



Segre-SM classes and intersection theory

The Segre-SM classes, while seemingly just a simple variation:

sSM(X ⊂M) =
cSM(X)

c(TM)

are much more useful for doing intersection theory.

The reason for this is that they behave well with respect to
pullback (and as a corollary, also wrt. intersection). In particular:

Theorem (Ohmoto): Given a G-representation W , an invariant
subvariety X ⊂W , a W -bundle E → B with classifying map
ϕ : B → BG, and a section σ : B → E transversal to X, we have

sSM(σ−1(XE ⊂ E) ⊂ B)︸ ︷︷ ︸
non-equivariant

= ϕ∗ sSM(X ⊂W )︸ ︷︷ ︸
equivariant



Applications to enumerative geometry

The most straightforward application of this idea is the following: Given
a generic degree d hypersurface H ⊂ Pn, intersecting it with any line
P1 ⊂ Pn gives us d points on that line.

More precisely, if the hypersurface is defined by the equation F = 0 with
F ⊂ Symd(Cn+1)∗, then restricting F to the fibers of the tautological
subbundle K2 → Gr2Cn+1 gives us a section σ = F |K of the bundle
SymdK∗. Then σ−1(Xµ) is the locus of lines in Pn which meet H with
the prescribed contact multiplicities.

For example µ = (2, 1d−2) gives the set of tangent lines; µ = (3, 1d−3)
the flex lines, µ = (2, 2, 1d−4) the bitangent lines, etc. The zero stratum
gives the lines lying on H.

Already the equivariant dual allows us to answer questions like: How

many 4× tangent lines are to a generic degree d surface in P3?



The geometric situation

Un ⊂

Mn︷ ︸︸ ︷
P1 × · · · × P1 ∆µ

−−−−−→

Mm︷ ︸︸ ︷
P1 × P1 × · · · × P1 ⊃ Yµyπ
PSymmV ∗ = Pm ⊃ Xµ

Notations:

I n is the number of parts of the partition (µ1, . . . , µn)

I m ≥ n is the total number of points m = µ1 + µ2 + · · ·+ µn

I Mk = P1 × P1 × · · · × P1, product of k projective lines

I Uk = {(z1, . . . , zk) | zi 6= zj} ⊂ Mk is the set of distinct points

I ∆µ is the diagonal map corresponding to µ

I π simply forgets the order of points.

Clearly, we have Xµ = π(∆µ(Un)).



Computation strategies

Strategy I:

I Observe that Mn is a smooth blow-up of ĎXµ. Taking the
pushforward of c(Mn) we get a linear combination of the
cSM(Xλ) classes, where Xλ ⊂ ĎXµ (equivalently, µ is a
refinement of λ);

I Since the smallest stratum, X(m) is smooth (it’s just the
rational normal curve), we know its CSM class, and we can
work out the rest recursively.

Strategy II:

I Solve the analogous problem in P1 × · · · × P1 to get cSM(Un);

I Compute the pushforward cSM(Xµ) = 1
aut(µ) ·π∗∆µ

∗ cSM(Un) .



Computation strategies, page 2

Both strategies work.

Unfortunately “Strategy I” requires a Möbius inversion for the
poset defined by the closure relation between the strata: λ ≺ µ if
Xλ ⊂ ĎXµ. Combinatorially, this is the (inverse of the) refinement
poset of partitions.

Apparently, these posets behave badly:3 We don’t even know the
signs of the Mobius function in general! So “Strategy I” gives us a
working algorithm, but it is slow, and gives no insight.

Hence, we will follow “Strategy II” instead. This is exactly the
same strategy Aluffi4 follows, we just work out the equivariant
version here (which is rather more intricate).

3G. Ziegler: On the poset of partitions of an integer (1986)
4P. Aluffi: Char. classes of discriminants and enumerative geometry (1998)



Equivariant cohomology

We have to describe the cohomology rings of the spaces we work in.

First the projective lines:

H∗GL2
(P1) = Z[α, β; ξ]S2 / ( (α+ξ)(β+ξ)=0 ) = Z[c1, c2; ξ] / ( ξ2+c1ξ+c2=0 )

H∗GL2
(Mm) = Z[α, β;u1, . . . , um]S2 / ( (α+ui)(β+ui)=0 : 1≤i≤m )

where ξ = −c1(L) and ui = −c1(Li), the Chern classes of the
tautological line bundles; c1, c2 are the generators of H∗(BGL2):
ci = ci(K) for the tautological bundle K2 → Gr2(C∞) = BGL2; and the
Chern roots α, β via the splitting principle: c1 = α+ β and c2 = αβ.

More generally, given a representation W (in our case W = SymmV ∗):

H∗GL2
(PW ) = Z[α, β; γ]S2 / (

∏
i(wi+γ)=0 )

where wi ∈ H∗T2(pt) = Z[α, β] are the weights of the representation.

In our case wi = ±
(
(n− i)α+ iβ

)
for 0 ≤ i ≤ n.



A warning about signs

There are several sign choices to be made here:

I ξ = ±c1(L1) ∈ H∗(Pm)

I α+ β = c1 = ±c1(K2) ∈ H∗(BGL2)

I which representation to use: SymmV 2 or SymmV 2∗

For the first two, our choices are ξ = −c1(L) and c1 = +c1(K).

The third one is more confusing, because there are canonical
isomorphisms between P1 ∼= P1∗ and PSymmV 2 ∼= PSymmV 2∗.

For brevity, we will abuse the notation and pretend we are working with

SymmV instead of SymmV ∗. This is not important except for the

applications (and for positivity), and we can just put back the signs at

that point.



The pushforward along the diagonal maps

First, consider the small diagonal ∆k : P1 →Mk:

∆k(z) = (z, z, . . . , z) ∈ P1 × P1 × · · · × P1 =Mk

Lemma:

∆∗1 =

m−1∑
j=0

σm−1−j(u) · τj(α, β)

∆∗ξ = −αβ ·
m∑
j=0

σm−j(u) · τj−2(α, β)

where τk is defined by

τk(α, β) =
αk+1 − βk+1

α− β
=


∑k
i=0 α

k−iβi, k ≥ 0

0, k = −1

− 1
αβ , k = −2
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The general diagonal map ∆µ is simply assembled from copies of ∆k

with k = µi.

Sketch of proof of the Lemma: Clearly we have

ξ = −c1(L) = −c1(∆∗Li) = ∆∗(−c1(Li)) = ∆∗ui,

and thus from the adjunction formula:

B = ∆∗ξ = ∆∗(ξ · 1) = ∆∗(∆
∗ui · 1) = ui ·∆∗1 = ui ·A.

The left-hand side is independent of i, and it turns out that there is a
unique pair of polynomials A and B (up to a scalar factor) of the right
degree satisfying this equation.

Remark: τk satisfies the recurrence

τk = (α+ β)τk−1 − (αβ)τk−2 = c1 · τk−1 − c2 · τk−2.



The space of n-tuples of points in P1

Consider the set of distinct points

Un =
{

(z1, . . . , zn) ∈ P1 × · · · × P1 : zi 6= zj
}

and more generally, for a set partition % ∈ P(n) of {1, . . . , n},

Y% =
{

(z1, . . . , zn) ∈ P1 × · · · × P1 :

: zi = zj iff i, j ∈ A for A ∈ %
}

Note: Un corresponds to the set partition
{
{1}, . . . , {n}

}
.

This is completely analogous to the situation with unordered
points, but we have set partitions instead of partitions.

Obs.: Y% = ∆%(Uk) where k = `(%) is the number of parts of %.



Computing cSM(Un)

Observe that Y% stratifies the space Mn = P1× · · · × P1, hence we
have

c(TMn) =
∑
%

cSM(Y%) = cSM(Un) +
∑
`(%)<n

∆%
∗(cSM(U`(%)))

From this, we can compute cSM(Un) recursively, since we know
that c(TP1) = 1 + α+ β + 2ξ.

For n = 1, 2, 3, they are:

cSM(U1) = 1 + α+ β + 2u1

cSM(U2) = 1 + α+ β + 2αβ + (u1 + u2)(1 + α+ β) + 2u1u2

cSM(U3) = 1− α2 − β2 + 2αβ



A formula for cSM(Un)
Theorem: For n ≥ 1, we have�



�
	cSM(Un) = q3 · (q − u1 − u2 − · · · − un)n−3

after the “umbral substitution” qk 7→ Qk, where Qk is defined by
the recurrence:

Q0 = 1

Qk+1 =
(
1− (k − 1)(α+ β)

)
·Qk − k(k − 3) · αβ ·Qk−1

This to be understood in the cohomology ring, where u2
i = 0.

This is an “umbral q-deformation” of Aluffi’s formula for the
non-equivariant case (which is the same with q = 1).

Lemma: The coefficients of Qk are polynomials in k; thus we can
define a “stable” Q∞ ∈ Q[k][[c1, c2]]



Sketch of proof

Clearly cSM(Un) must be symmetric in u1, . . . , un, hence

cSM(Un) =

n∑
i=0

σi(u) · pn,i(α, β)

for some polynomials pn,k.

Consider the projection maps ϑ :Mn →Mn−1 which simply
forgets the last coordinate. Clearly ϑ(Un) = Un−1, thus

ϑ∗ cSM(Un) = χ(ϑ−1(pt)) · cSM(Un−1)

where the fibrum ϑ−1(z1, . . . , zn−1) is P1 minus those points,
having Euler characteristics χ = 2− (n− 1) = 3− n.

It’s easy to show that ϑ∗ simply extracts the coefficient of un,
which shows how pn,i depends on n.



Sketch of proof, page 2

It follows that cSM(Un) has the following form (for n ≥ 3):

cSM(Un) =

n−3∑
i=0

(−1)i · (n− 3)!

(n− 3− i)!
· σi(u) ·Qn−i(α, β)

for some Qk (not depending on n).

To understand Qk, decompose Un × P1 according which (if any) of
the points zi the new point zn+1 ∈ P1 coincides with:

Un × P1 = Un+1 ∪
n∐
i=1

∆(i)(Un)

where ∆(i) duplicates the i-th point, so that zi = zn+1 in the
image.

Take the CSM of this equation; some more computation with that
results the earlier recurrence.



The pushforward along the order forgetting map

Let π :Mm → Pm the order-forgetting map. This is a degree m! finite map.

Because of symmetry reasons, π∗ is fully determined by the polynomials Pk(m)
for 0 ≤ k ≤ m:

Pk(m) := π∗(u1u2 · · ·uk) = π∗(uσ(1) · · ·uσ(k)) ∈ Z[α, β; γ]S2

These can be computed recursively by considering subspaces of the form

Zk,l = {0} × · · · × {0}︸ ︷︷ ︸
k times

×P1 × · · · × P1︸ ︷︷ ︸
m− k − l times

×{∞} × · · · × {∞}︸ ︷︷ ︸
l times

⊂Mm

Lemma: Pk(m) = (m− k)! · P̂k(m) where P̂k satisfies the recurrence

P̂0(m) = 1

P̂k+1(m) =
(
γ + k(α+ β)

)
· P̂k(m) + k(m− k + 1) · αβ · P̂k−1(m)

Observation: P̂k is a homogeneous degree k polynomial in α, β, γ;

furthermore, the coefficients of P̂k(m) are polynomials in m.



The umbral formula for cSM(Xµ)

Theorem: Define the polynomial Θ(k) by the formula:

Θ(k) =
(β + q)(α+ t)k − (α+ q)(β + t)k

(α− β)
∈ Z[α, β; t, q]

then �
�

�
�cSM(Xµ) =

1

aut(µ)

n∏
i=1

Θ(µi)

after the umbral substitution

tj 7−→ Pj(m) = (m− j)! · P̂j(m)

qk 7−→ Qk · (n− 3)(n− 4) · · · (k − 4)︸ ︷︷ ︸
falling factorial (n− 3)(n−k)

Here aut(µ) = e1! · e2! · · · er! where µ = (1e1 , 2e2 , . . . , rer).



Stability

It’s a natural question, and also important for applications, to
consider the family of partitions (µ, 1d) for d ∈ N. Note that
codim(Xµ,1d) does not depend on d.

Theorem: Assuming that n0 = `(µ) ≥ 3, the coefficients of
cSM(cone(Xµ,1d)) are polynomials in d (in any of the three

Z-module bases αiβj , ce1c
f
2 or sa,b).

Furthermore the degrees of these polynomials are bounded by:

I deg(pe,f (d)) ≤ 2e+ 3f for the coefficient of ce1c
f
2

I deg(pi,j(d)) ≤ 2(i+ j) for the coefficient of αiβj

I deg(pa,b(d)) ≤ 2(a+ b) for the coefficient of sa,b

Hence, we can interpolate the coefficient polynomials from the first
few values (which we can compute with software).



Stability, sketch of proof, page 1
Step 1: The coeffs of Qk are polynomials in k, with the same degree bounds.

Denoting the coeff. of ci1c
j
2 in Qk by qij(k), we can rewrite the recurrence as:

qij(k + 1)− qij(k)︸ ︷︷ ︸
∆ij(k)

= −(k − 1) · qi−1,j(k)− k(k − 3) · qi,j−1(k − 1)

from which the statement follows by induction on i, j:

qij(k) = qij(0) +

k−1∑
r=0

∆ij(r)

= qij(0)−
k−1∑
r=0

(r − 1) · qi−1,j(r) + r(r − 3) · qi,j−1(r − 1)︸ ︷︷ ︸
polynomial in r

The degree bound follows (again by induction) from:

deg(qij) = 1 + max
{

2(i− 1) + 3j︸ ︷︷ ︸
deg(qi−1,j)

+1 , 2i+ 3(j − 1)︸ ︷︷ ︸
deg(qi,j−1)

+2
}

= 2i+ 3j



Stability, sketch of proof, page 2

Step 2: Observe that Θ(1) = q − t, hence (assuming 1 6∈ µ):

cSM(Xµ,1d) =
1

d!
· cSM(Xµ) · (q − t)d

Considering a single term ce1c
f
2 t
aqb in cSM(Xµ), that will become

1

d!
· c1ec2f · taqb · (q − t)d =

1

d!
· c1ec2f ·

d∑
i=0

(−1)i
(
d

i

)
ti+aqd−i+b

After the substitution qk 7→ (n− 3)(n−k) ·Qk and tj 7→ (m− j)! · P̂j(m):

c1ec2f ·
∞∑
i=0

(−1)i

i!
P̂i(m0+d)· (m0 − a+ d− i)!

(d− i)!
·Qd−i+b·(n0−3+d)(n0−b+i)

To finish the proof, stare at this formula for a long time, and also

consider very carefully what happens when i > d...



Stability for the Segre-SM classes

Recall that

c(SymmC2) =

m∏
i=0

(
1 + iα+ (m− i)β︸ ︷︷ ︸

wi

)
Lemma: The coefficients of c(SymmC2) are polynomials in m, with the usual
degree bounds: 2e+ 3f for ce1c

f
2 and 2(i+ j) for αiβj or si,j .

Remark: as c(SymmC2) = cSM(cone(ĘX1m)), this is not too surprising.

Lemma: The same is true for the inverse 1
c(SymmC2)

.

Remark: This is again not too surprising, as we have the duality:

c(SymmC2) =

m+1∑
k=0

ek(w)
1

c(SymmC2)
=

∞∑
k=0

(−1)khk(w)

where ek and hk are the elementary resp. complete symmetric polynomials.
It also follows from a direct power series inversion argument.

Corollary: The same is also true for the Segre-SM classes sSM(Xµ).



Positivity of Segre-SM classes

Conjecture: Depending on sign conventions, the Schur-coefficients of the
Segre-SM classes sSM(Xµ) of the open strata (for m ≥ 2), have either:

I alternating signs, starting with a positive sign at degree codim(Xµ);

I are fully positive or fully negative, depending on the parity of codim(Xµ).

Remark: Obviously they cannot be just simply positive, as we have

1 = sSM(Pm) =
∑
µ`m

sSM(Xµ)

Conjecture: For m ≥ 2, the Segre-SM classes are also alternating linear
combinations of the CSM classes cSM(S◦ij) of Schubert cells S◦ij ⊂ Gr2(CN ).

It is known that cSM(S◦ij) are Schur-positive5. Conjecture: The Schur

polynomials sij can be written as alternating linear combinations of the

cSM(S◦ij) classes.

5P. Aluffi, C. Mihalcea: Chern classes of Schubert cells and varieties
J. Huh: Positivity of Chern classes of Schubert cells and varieties



Intersection theory

The best kept secret of CSM classes: For A,B ⊂M intersecting
transversally, we should have

cSM(A ∩B) =
cSM(A) · cSM(B)

c(M)

“Proof”: sSM(A ∩B) = sSM(∆−1(A×B)) = ∆∗ sSM(A×B)

Corollary (Aluffi6): The non-equivariant CSM class of X ⊂ Pm contains
the same information as the numbers χ(X ∩H1 ∩ · · · ∩Hk) for k ≥ 0,
where Hi ⊂ Pm are generic hyperplanes.

Proof: cSM(X ∩ Pm−k) = cSM(X) · sSM(Pm−k). It’s easy to show that
sSM(Hi) = h

1+h , hence

sSM(Pm−k ⊂ Pm) =
hk

(1 + h)k
= hk ·

∞∑
i=0

(−1)i · hi ·
(
i+ k − 1

k − 1

)

6P. Aluffi: Euler chars. of general linear sections and poly. Chern classes



Closure of the strata
For the applications, we usually want the CSM or Segre-SM classes of the
closure ĎXµ of the strata Xµ. For any concrete partition µ, this is easy to
compute:

cSM( ĎXµ) =
∑
λ≺µ

cSM(Xµ)

Unfortunately, we don’t have a nice general formula for it (and we don’t really
expect one).

For the applications, we need cSM(ĞXµ,1d), and that’s a problem. However, we
can express at least some simple cases. Introduce the shorthand X[µ] for
Xµ,1,1,...; then we have (set theoretically):

ĚX[1] = Pm

ĚX[2] = ĚX[1] −X[1]

ĞX[2,2] = ĚX[2] −X[2] −X[3]

ĞX[2,2,2] = ĞX[2,2] −X[4] −X[2,2] −X[3,2] −X[3,3] −X[5,1,1]

ĚX[3] = ĚX[2] −X[2,2] −X[2,2,2] −X[2,2,2,2] − · · · = ĚX[2] −
∐
k≥1

X[2k]
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ĘX[1] = Pm

ĘX[2] = ĘX[1] −X[1]

ĞX[2,2] = ĘX[2] −X[2] −X[3]

ĞX[2,2,2] = ĞX[2,2] −X[4] −X[2,2] −X[3,2] −X[3,3] −X[5,1,1]

ĘX[3] = ĘX[2] −X[2,2] −X[2,2,2] −X[2,2,2,2] − · · · = ĘX[2] −
∐
k≥1

X[2k]

ĞX[3,2] = ĘX[3] −X[3] −X[4]

ĞX[k,2] = ĘX[k] −X[k] −X[k+1]

ĘX[4] = ĘX[3] −
∐
k≥1

∐
j≥0

X[3k,2j ]

ĞX[3,3] = ĞX[3,2] −X[5] −
∐
j≥1

(
X[3,2j ] ∪X[4,2j ] ∪X[5,2j ]

)
ĘX[5] = ĘX[4] −

∐
k≥1

∐
j≥0

∐
i≥0

X[4k,3j ,2i]

Even though there are potentially infinite sums appearing here, in each codimension

the sums are finite. Since the codimension is a lower bound for the degree of terms in

the CSM, it follows that the stability is also true for these classes.



The dual curve of a generic plane curve

A simple application is µ = (2, 1d − 2); in this case ĎXµ gives the
variety of lines tangent to generic hypersurface in Pn. For n = 2
we get the dual curve Č of a generic plane curve C.

Calculation: For a generic plane curve C of degree d ≥ 2

cSM(Č) = c(P2) · ϕ∗sSM( sX2,1d−2) =

= d(d− 1)︸ ︷︷ ︸
deg(Č)

·s1 +
1

2
(d− 3)d(4− d− d2)︸ ︷︷ ︸

χ(Č)

·s1,1

The degree is of course well known, and the Euler characteristic
can be also checked using classical methods. For d ≥ 2:

χ(Čd) = 2, 0,−32,−130,−342,−728,−1360,−2322 . . .



The locus of hyperflex lines to a generic surface

Exactly the same way, can consider any tangency condition in any
dimension.

For example consider the locus Φ4 ⊂ Gr2(C4) of hyperflex lines to
a generic surface S ⊂ P3 (meeting the surface at a point of order
at least 4). This is a curve, and its CSM class is:

Calculation: For a generic surface S ⊂ P3 of degree d ≥ 4

cSM(Φ4) = c(P3) · ϕ∗sSM( sX4,1d−4) =

= 2(d− 3)d(3d− 2) · s2,1︸ ︷︷ ︸
[Φ4]

+ 2d(158d− 186− 31d2)︸ ︷︷ ︸
χ(Φ4)

·s2,2



The locus of bitangent lines to a generic surface

Another example is the locus Φ2,2 ⊂ Gr2(C4) of bitangent lines to
a generic surface S ⊂ P3. This is itself a surface in Gr2(C4), and
its CSM class is:

Calculation: For a generic surface S ⊂ P3 of degree d ≥ 4

cSM(Φ2,2) = c(P3) · ϕ∗sSM( sX2,2,1d−4) =

=
1

2
(d− 3)(d− 2)d(d+ 3) · s1,1 +

1

2
(d− 3)(d− 2)(d− 1)d · s2︸ ︷︷ ︸

[Φ2,2] or bidegree

+

+
1

3
(d− 3)d(2− 63d+ 18d2 + 6d3 − 2d4)︸ ︷︷ ︸

no direct interpretation (?)

·s2,1

+
1

12
d(−6144 + 8096d− 1872d2 − 909d3 + 396d4 + 10d5 − 24d6 + 3d7)︸ ︷︷ ︸

χ(Φ2,2)

·s2,2



The number of 4× tangent lines to a generic surface

Question: How many 4× tangent lines are to a generic degree
d ≥ 8 surface in P3? This was first computed by Schubert.

Note that we simply want to count a zero dimensional locus, so we
don’t actually need the full power of CSM classes; the only thing
we need is the equivariant dual of the locus sX24,1d−8 .

Calculation: For a generic surace S of degree d ≥ 8

cSM(4×) =
1

12
n · (n− 4)!

(n− 8)!
· (n3 + 6n2 + 7n− 30)︸ ︷︷ ︸

number of 4× tangent lines

·s2,2

For d ≥ 8 these numbers are:

14752, 112320, 492000, 1620080, 4445280, 10719072 . . .



The number of maximally hyperflex lines
Question: Given a generic degree (2d+ 1) hypersurface H in Pd+1, how many
lines are in Pd+1 which meet H at a single point with a contact of order
(2d+ 1)?

Again, we don’t need the power of CSM classes, simply the equivariant dual of
X(2d+1) (which is a rational normal curve).

Calculation: The locus of maximally hyperflex lines Z2d+1 ⊂ Gr2(Cd+2) has
CSM class

cSM(Z2d+1) = sd,d ·
d∑
j=0

(2d+ 1)!

d− j + 1
·

(
2d− 2j

d− j

)
· σj(Γd)︸ ︷︷ ︸

number of max. hyperflex lines

Γd =
{

(2d+1−2i)2

i(2d+1−i)

∣∣ i ∈ {1, 2, . . . , d} }
For d ≥ 1 the numbers are:

9, 575, 99715, 33899229, 19134579541, 16213602794675 . . .



Linear systems of hypersurfaces

A less trivial application is to consider pencils, nets or higher
dimensional linear systems of degree d hyperfaces Hy ⊂ Pn
parametrized by y ∈ Ps.

Such a linear system is encoded by a linear map

F ∈ Hom
[
Cs+1,Symd(Cn+1)∗

]
= (Cs+1)∗ ⊗ Symd(Cn+1)∗

Given a tangency condition µ, we can define the incidence variety

Jµ =
{

(y,K) ∈ Ps × Gr2(Cn+1)
∣∣ PK has contact

type µ with Hy = {Fy = 0}
}
⊂ Ps × Gr2(Cn+1)

Observation: Jµ = σ−1(Xµ) where the section σ of L∗ ⊗ SymdK∗

is defined by restricting F to pr∗1L⊗ pr∗2K.



Linear systems of hypersurfaces, page 2

Observation: We can compute cSM(Jµ) using the same “twisting
trick” which gives the correspondance between the affine and the
projective CSM classes. Unfortunately, when projecting down to
the second component, while (pr2)∗ cSM(Jµ) is easy to compute, it
does not normally agree with cSM(pr2(Jµ))...

We can still do some counting though (but again, we don’t need
the full CSM class for that):

Calculation: Given a generic pencil of degree d ≥ 4 plane curves,
the number of hyperflexes (contact of order ≥ 4) to the members
of the family is 6(d− 3)(3d− 2):

cSM( sJ(4,1d−4)) = 6(d− 3)(3d− 2)︸ ︷︷ ︸
# hyperflex

·s1,1 · ξ ∈ H∗(P1 × Gr2(C3))

It’s easy to show that (pr2)∗ simply extracts the coefficient of ξ.


