cmu: Unification in a Commutative Monoid

[ algebra, library, program ] [ Propose Tags ]

The unification problem is given the problem statement t =? t', find a most general substitution s such that s(t) = s(t') modulo the axioms of a commutative monoid. Substitition s is more general than s' if there is a substitition s" such that s' = s" o s.


[Skip to Readme]

Modules

[Last Documentation]

  • Algebra
    • CommutativeMonoid
      • Algebra.CommutativeMonoid.LinDiophEq
      • Algebra.CommutativeMonoid.Unification

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12
Change log ChangeLog
Dependencies array, base (>=4.13 && <5), containers (>=0.3) [details]
License LicenseRef-GPL
Author
Maintainer ramsdell@mitre.org
Category Algebra
Source repo head: git clone git://github.com/ramsdell/cmu.git
Uploaded by JohnRamsdell at 2019-10-17T16:46:14Z
Distributions NixOS:1.12
Reverse Dependencies 1 direct, 0 indirect [details]
Executables cmu
Downloads 10367 total (38 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs not available [build log]
All reported builds failed as of 2019-10-17 [all 3 reports]

Readme for cmu-1.12

[back to package description]
This package contains a library for unification in
commutative monoid and a program that exercises the library.

$ cmu
Commutative monoid unification -- :? for help
cmu> 2x+y=3z
Problem:   2x + y = 3z
Unifier:   [x : g0 + 3g2,y : g0 + 3g1,z : g0 + g1 + 2g2]

cmu> 2x=x+y
Problem:   2x = x + y
Unifier:   [x : g0,y : g0]

cmu> 64x=41y+a
Problem:   64x = a + 41y
Unifier:   [a : 5g0 + 2g1 + 23g2 + g3 + 64g4,x : 2g0 + 9g1 + g2 + 25g3 + g4 + 41g5,y : 3g0 + 14g1 + g2 + 39g3 + 64g5]

cmu> :quit