{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} -- | Create Netlists out of normalized CoreHW Terms module CLaSH.Netlist where import Control.Applicative (liftA2) import Control.Lens ((.=), (<<%=)) import qualified Control.Lens as Lens import qualified Control.Monad as Monad import Control.Monad.State (runStateT) import Control.Monad.Writer (listen, runWriterT) import Data.Either (partitionEithers) import Data.HashMap.Lazy (HashMap) import qualified Data.HashMap.Lazy as HashMap import qualified Data.HashSet as HashSet import Data.List (elemIndex, nub) import Data.Maybe (fromMaybe) import qualified Data.Text.Lazy as Text import Unbound.LocallyNameless (Embed (..), name2String, runFreshMT, string2Name, unbind, unembed, unrebind) import CLaSH.Core.DataCon (DataCon (..)) import CLaSH.Core.Literal (Literal (..)) import CLaSH.Core.Pretty (showDoc) import CLaSH.Core.Term (Pat (..), Term (..), TmName) import qualified CLaSH.Core.Term as Core import CLaSH.Core.Type (Type) import CLaSH.Core.Util (collectArgs, isVar, termType) import CLaSH.Core.Var (Id, Var (..)) import CLaSH.Netlist.BlackBox import CLaSH.Netlist.Id import CLaSH.Netlist.Types as HW import CLaSH.Netlist.Util import CLaSH.Normalize.Util import CLaSH.Primitives.Types as P import CLaSH.Util -- | Generate a hierarchical netlist out of a set of global binders with -- @topEntity@ at the top. genNetlist :: Maybe VHDLState -- ^ State for the 'CLaSH.Netlist.VHDL.VHDLM' Monad -> HashMap TmName (Type,Term) -- ^ Global binders -> PrimMap -- ^ Primitive definitions -> (Type -> Maybe (Either String HWType)) -- ^ Hardcoded Type -> HWType translator -> Maybe Int -- ^ Symbol count -> TmName -- ^ Name of the @topEntity@ -> IO ([Component],VHDLState) genNetlist vhdlStateM globals primMap typeTrans mStart topEntity = do (_,s) <- runNetlistMonad vhdlStateM globals primMap typeTrans $ genComponent topEntity mStart return (HashMap.elems $ _components s, _vhdlMState s) -- | Run a NetlistMonad action in a given environment runNetlistMonad :: Maybe VHDLState -- ^ State for the 'CLaSH.Netlist.VHDL.VHDLM' Monad -> HashMap TmName (Type,Term) -- ^ Global binders -> PrimMap -- ^ Primitive Definitions -> (Type -> Maybe (Either String HWType)) -- ^ Hardcode Type -> HWType translator -> NetlistMonad a -- ^ Action to run -> IO (a,NetlistState) runNetlistMonad vhdlStateM s p typeTrans = runFreshMT . flip runStateT s' . (fmap fst . runWriterT) . runNetlist where s' = NetlistState s HashMap.empty 0 0 HashMap.empty p (fromMaybe (HashSet.empty,0,HashMap.empty) vhdlStateM) typeTrans -- | Generate a component for a given function (caching) genComponent :: TmName -- ^ Name of the function -> Maybe Int -- ^ Starting value of the unique counter -> NetlistMonad Component genComponent compName mStart = do compExprM <- fmap (HashMap.lookup compName) $ Lens.use bindings case compExprM of Nothing -> error $ $(curLoc) ++ "No normalized expression found for: " ++ show compName Just (_,expr) -> makeCached compName components $ genComponentT compName expr mStart -- | Generate a component for a given function genComponentT :: TmName -- ^ Name of the function -> Term -- ^ Corresponding term -> Maybe Int -- ^ Starting value of the unique counter -> NetlistMonad Component genComponentT compName componentExpr mStart = do varCount .= fromMaybe 0 mStart componentNumber <- cmpCount <<%= (+1) let componentName' = (`Text.append` (Text.pack $ show componentNumber)) . ifThenElse Text.null (`Text.append` Text.pack "Component_") (`Text.append` Text.pack "_") . mkBasicId . last . Text.splitOn (Text.pack ".") . Text.pack $ name2String compName (arguments,binders,result) <- do { normalizedM <- splitNormalized componentExpr ; case normalizedM of Right normalized -> mkUniqueNormalized normalized Left err -> error err } let ids = HashMap.fromList $ map (\(Id v (Embed t)) -> (v,t)) $ arguments ++ map fst binders gamma <- (ids `HashMap.union`) . HashMap.map fst <$> Lens.use bindings varEnv .= gamma typeTrans <- Lens.use typeTranslator let resType = unsafeCoreTypeToHWType typeTrans $ ids HashMap.! result argTypes = map (\(Id _ (Embed t)) -> unsafeCoreTypeToHWType typeTrans t) arguments let netDecls = map (\(id_,_) -> NetDecl (mkBasicId . Text.pack . name2String $ varName id_) (unsafeCoreTypeToHWType typeTrans . unembed $ varType id_) Nothing ) $ filter ((/= result) . varName . fst) binders (decls,clks) <- listen $ concat <$> mapM (uncurry mkDeclarations . second unembed) binders let compInps = zip (map (mkBasicId . Text.pack . name2String . varName) arguments) argTypes compOutp = (mkBasicId . Text.pack $ name2String result, resType) component  = Component componentName' (nub clks) compInps compOutp (netDecls ++ decls) return component -- | Generate a list of Declarations for a let-binder mkDeclarations :: Id -- ^ LHS of the let-binder -> Term -- ^ RHS of the let-binder -> NetlistMonad [Declaration] mkDeclarations bndr (Var _ v) = mkFunApp bndr v [] mkDeclarations bndr e@(Case _ _ []) = error $ $(curLoc) ++ "Case-decompositions with an empty list of alternatives not supported" mkDeclarations bndr e@(Case (Var scrutTy scrutNm) _ [alt]) = do (pat,Var varTy varTm) <- unbind alt typeTrans <- Lens.use typeTranslator let dstId = mkBasicId . Text.pack . name2String $ varName bndr altVarId = mkBasicId . Text.pack $ name2String varTm selId = mkBasicId . Text.pack $ name2String scrutNm modifier = case pat of DataPat (Embed dc) ids -> let (_,tms) = unrebind ids in case elemIndex (Id varTm (Embed varTy)) tms of Nothing -> Nothing Just fI -> Just (Indexed (unsafeCoreTypeToHWType typeTrans scrutTy,dcTag dc - 1,fI)) _ -> error $ $(curLoc) ++ "unexpected pattern in extractor: " ++ showDoc e extractExpr = Identifier (maybe altVarId (const selId) modifier) modifier return [Assignment dstId extractExpr] mkDeclarations bndr (Case scrut ty alts) = do alts' <- mapM unbind alts scrutTy <- termType scrut scrutHTy <- unsafeCoreTypeToHWTypeM scrutTy (scrutExpr,scrutDecls) <- first (mkScrutExpr scrutHTy (fst (last alts'))) <$> mkExpr scrutTy scrut (exprs,altsDecls) <- (second concat . unzip) <$> mapM (mkCondExpr scrutHTy) alts' let dstId = mkBasicId . Text.pack . name2String $ varName bndr return $! scrutDecls ++ altsDecls ++ [CondAssignment dstId scrutExpr (reverse exprs)] where mkCondExpr :: HWType -> (Pat,Term) -> NetlistMonad ((Maybe Expr,Expr),[Declaration]) mkCondExpr scrutHTy (pat,alt) = do (altExpr,altDecls) <- mkExpr ty alt (,altDecls) <$> case pat of DefaultPat -> return (Nothing,altExpr) DataPat (Embed dc) _ -> return (Just (dcToLiteral scrutHTy (dcTag dc)),altExpr) LitPat (Embed (IntegerLiteral i)) -> return (Just (HW.Literal Nothing (NumLit $ fromInteger i)),altExpr) _ -> error $ $(curLoc) ++ "Not an integer literal in LitPat" mkScrutExpr :: HWType -> Pat -> Expr -> Expr mkScrutExpr scrutHTy pat scrutE = case pat of DataPat (Embed dc) _ -> let modifier = Just (DC (scrutHTy,dcTag dc - 1)) in case scrutE of Identifier scrutId _ -> Identifier scrutId modifier BlackBoxE bbE _ -> BlackBoxE bbE modifier _ -> error $ $(curLoc) ++ "Not in normal form: Not a variable reference or primitive as subject of a case-statement" _ -> scrutE dcToLiteral :: HWType -> Int -> Expr dcToLiteral Bool 1 = HW.Literal Nothing (BoolLit False) dcToLiteral Bool 2 = HW.Literal Nothing (BoolLit True) dcToLiteral Bit 1 = HW.Literal Nothing (BitLit H) dcToLiteral Bit 2 = HW.Literal Nothing (BitLit L) dcToLiteral t i = HW.Literal (Just $ conSize t) (NumLit (i-1)) mkDeclarations bndr app = do let (appF,(args,tyArgs)) = second partitionEithers $ collectArgs app args' <- Monad.filterM (liftA2 representableType (Lens.use typeTranslator) . termType) args case appF of Var _ f | all isVar args' && null tyArgs -> mkFunApp bndr f args' | otherwise -> error $ $(curLoc) ++ "Not in normal form: Var-application with non-Var arguments" _ -> do (exprApp,declsApp) <- mkExpr (unembed $ varType bndr) app let dstId = mkBasicId . Text.pack . name2String $ varName bndr return (declsApp ++ [Assignment dstId exprApp]) -- | Generate a list of Declarations for a let-binder where the RHS is a function application mkFunApp :: Id -- ^ LHS of the let-binder -> TmName -- ^ Name of the applied function -> [Term] -- ^ Function arguments -> NetlistMonad [Declaration] mkFunApp dst fun args = do normalized <- Lens.use bindings case HashMap.lookup fun normalized of Just _ -> do (Component compName hidden compInps compOutp _) <- preserveVarEnv $ genComponent fun Nothing if length args == length compInps then let dstId = mkBasicId . Text.pack . name2String $ varName dst args' = map varToExpr args hiddenAssigns = map (\(i,_) -> (i,Identifier i Nothing)) hidden inpAssigns = zip (map fst compInps) args' outpAssign = (fst compOutp,Identifier dstId Nothing) instDecl = InstDecl compName dstId (outpAssign:hiddenAssigns ++ inpAssigns) in return [instDecl] else error $ $(curLoc) ++ "under-applied normalized function" Nothing -> case args of [] -> do let dstId = mkBasicId . Text.pack . name2String $ varName dst return [Assignment dstId (Identifier (mkBasicId . Text.pack $ name2String fun) Nothing)] _ -> error $ $(curLoc) ++ "Unknown function: " ++ showDoc fun -- | Generate an expression for a term occurring on the RHS of a let-binder mkExpr :: Type -- ^ Type of the LHS of the let-binder -> Term -- ^ Term to convert to an expression -> NetlistMonad (Expr,[Declaration]) -- ^ Returned expression and a list of generate BlackBox declarations mkExpr _ (Core.Literal lit) = return (HW.Literal Nothing . NumLit $ fromInteger $! i,[]) where i = case lit of (IntegerLiteral i') -> i' _ -> error $ $(curLoc) ++ "not an integer literal" mkExpr ty app = do let (appF,(args,tyArgs)) = second partitionEithers $ collectArgs app hwTy <- unsafeCoreTypeToHWTypeM ty args' <- Monad.filterM (liftA2 representableType (Lens.use typeTranslator) . termType) args case appF of Data dc | all (\e -> isConstant e || isVar e) args' -> mkDcApplication hwTy dc args' | otherwise -> error $ $(curLoc) ++ "Not in normal form: DataCon-application with non-Simple arguments" Prim nm _ -> do bbM <- fmap (HashMap.lookup . Text.pack $ name2String nm) $ Lens.use primitives case bbM of Just p@(P.BlackBox {}) -> case template p of Left templD -> do i <- varCount <<%= (+1) let tmpNm = "tmp_" ++ show i tmpId = Id (string2Name tmpNm) (Embed ty) tmpS = Text.pack tmpNm netDecl = NetDecl tmpS hwTy Nothing (bbCtx,ctxDcls) <- mkBlackBoxContext tmpId args bb <- fmap BlackBoxD $! mkBlackBox templD bbCtx return (Identifier tmpS Nothing, ctxDcls ++ [netDecl,bb]) Right templE -> do (bbCtx,ctxDcls) <- mkBlackBoxContext (Id (string2Name "_ERROR_") (Embed ty)) args bb <- fmap (`BlackBoxE` Nothing) $! mkBlackBox templE bbCtx return (bb,ctxDcls) _ -> error $ $(curLoc) ++ "No blackbox found: " ++ name2String nm Var _ f | null args -> return (Identifier (mkBasicId . Text.pack $ name2String f) Nothing,[]) | otherwise -> error $ $(curLoc) ++ "Not in normal form: top-level binder in argument position: " ++ showDoc app _ -> error $ $(curLoc) ++ "Not in normal form: application of a Let/Lam/Case: " ++ showDoc app -- | Generate an expression for a DataCon application occurring on the RHS of a let-binder mkDcApplication :: HWType -- ^ HWType of the LHS of the let-binder -> DataCon -- ^ Applied DataCon -> [Term] -- ^ DataCon Arguments -> NetlistMonad (Expr,[Declaration]) -- ^ Returned expression and a list of generate BlackBox declarations mkDcApplication dstHType dc args = do argTys <- mapM termType args (argExprs,argDecls) <- fmap (second concat . unzip) $! mapM (\(e,t) -> mkExpr t e) (zip args argTys) fmap (,argDecls) $! case dstHType of SP _ dcArgPairs -> do let dcNameBS = Text.pack . name2String $ dcName dc dcI = dcTag dc - 1 dcArgs = snd $ indexNote ($(curLoc) ++ "No DC with tag: " ++ show dcI) dcArgPairs dcI case compare (length dcArgs) (length argExprs) of EQ -> return (HW.DataCon dstHType (Just $ DC (dstHType,dcI)) argExprs) LT -> error $ $(curLoc) ++ "Over-applied constructor" GT -> error $ $(curLoc) ++ "Under-applied constructor" Product _ dcArgs -> case compare (length dcArgs) (length argExprs) of EQ -> return (HW.DataCon dstHType (Just $ DC (dstHType,0)) argExprs) LT -> error $ $(curLoc) ++ "Over-applied constructor" GT -> error $ $(curLoc) ++ "Under-applied constructor" Sum _ _ -> return (HW.DataCon dstHType (Just $ DC (dstHType,dcTag dc - 1)) []) Bool -> let dc' = case name2String $ dcName dc of "True" -> HW.Literal Nothing (BoolLit True) "False" -> HW.Literal Nothing (BoolLit False) _ -> error $ $(curLoc) ++ "unknown bool literal: " ++ show dc in return dc' Bit -> let dc' = case name2String $ dcName dc of "H" -> HW.Literal Nothing (BitLit H) "L" -> HW.Literal Nothing (BitLit L) _ -> error $ $(curLoc) ++ "unknown bit literal: " ++ show dc in return dc' Integer -> let dc' = case name2String $ dcName dc of "S#" -> Nothing _ -> error $ $(curLoc) ++ "not a simple integer: " ++ show dc in return (HW.DataCon dstHType dc' argExprs) Vector 0 _ -> return (HW.DataCon dstHType Nothing []) Vector 1 _ -> return (HW.DataCon dstHType (Just VecAppend) [head argExprs]) Vector _ _ -> return (HW.DataCon dstHType (Just VecAppend) argExprs) _ -> error $ $(curLoc) ++ "mkDcApplication undefined for: " ++ show dstHType