module Test.Tests where import Data.List (sort) import qualified Data.Set as S import Prelude hiding (null, lookup, filter,map) import qualified Prelude as P import Test.QuickCheck import Control.Applicative((<$>)) import Data.Bimap (.:) = (.).(.) instance (Ord a, Arbitrary a, Ord b, Arbitrary b) => Arbitrary (Bimap a b) where arbitrary = fromList `fmap` arbitrary instance (Ord a, CoArbitrary a, Ord b, CoArbitrary b) => CoArbitrary (Bimap a b) where coarbitrary = coarbitrary . toList -- generator for filter/partition classification functions data FilterFunc a b = FilterFunc String (a -> b -> Bool) instance Show (FilterFunc a b) where show (FilterFunc desc _) = desc instance (Integral a, Arbitrary a, Integral b, Arbitrary b) => Arbitrary (FilterFunc a b) where arbitrary = do pivot <- (arbitrary :: Gen Integer) return $ FilterFunc ("(\\x y -> x - y < " ++ show pivot ++ ")") (\x y -> fromIntegral x - fromIntegral y < pivot) instance (Integral a, CoArbitrary a, Integral b, CoArbitrary b) => CoArbitrary (FilterFunc a b) where coarbitrary _ gen = do x <- arbitrary coarbitrary (x :: Int) gen -- empty bimap has zero size prop_size_empty = size empty == 0 -- empty bimap is null prop_null_empty = null empty -- when converting from a list and back, each pair in the latter -- list was originally in the former list -- (heh, this is probably made redundant by polymorphism) prop_fromList_toList xs = let xs' = toList . fromList $ xs in all (flip elem xs) xs' where _ = xs :: [(Int, Integer)] -- when converting a list to a bimap, each list element either -- ends up in the bimap, or could conceivably have been clobbered prop_fromList_account xs = all (\x -> isMember x || notUnique x) xs where _ = xs :: [(Int, Integer)] bi = fromList xs isMember x = x `pairMember` bi notUnique (x, y) = ((>1) . length . P.filter (== x) . P.map fst $ xs) || ((>1) . length . P.filter (== y) . P.map snd $ xs) -- a bimap created from a list is no larger than the list prop_fromList_size xs = (size $ fromList xs) <= length xs where _ = xs :: [(Int, Integer)] -- a monotone bimap can be reconstituted via fromAscPairList prop_fromAscPairList_reconstitute xs = and [ valid bi' , (bi == bi') ] where xs' = zip (sort $ P.map fst xs) (sort $ P.map snd xs) bi :: Bimap Int Integer bi = fromList xs' bi' = fromAscPairList . toAscList $ bi -- fromAscPairList will never produce an invalid bimap prop_fromAscPairList_check xs = valid bi where bi :: Bimap Int Integer bi = fromAscPairList xs -- if a pair is a member of the bimap, then both elements are present -- and associated with each other prop_pairMember bi k v = ((k, v) `pairMember` bi) == and [ k `member` bi , v `memberR` bi , lookup k bi == Just v , lookupR v bi == Just k ] where _ = bi :: Bimap Int Integer -- an inserted pair ends up in the bimap prop_insert_member bi k v = (k, v) `pairMember` (insert k v bi) where _ = bi :: Bimap Int Integer -- if we insert a pair with an existing value, the old value's twin -- is no longer in the bimap prop_clobberL bi b' = (not . null $ bi) && (b' `notMemberR` bi) ==> (a, b) `pairNotMember` insert a b' bi where (a, b) = head . toList $ bi :: (Int, Integer) prop_clobberR bi a' = (not . null $ bi) && (a' `notMember` bi) ==> (a, b) `pairNotMember` insert a' b bi where (a, b) = head . toList $ bi :: (Int, Integer) -- if we politely insert two members, neither of which is present, -- then the two are successfully associated prop_tryInsert_member bi k v = (k, v) `neitherMember` bi ==> pairMember (k, v) (tryInsert k v bi) where _ = bi :: Bimap Int Integer neitherMember (k, v) bi = k `notMember` bi && v `notMemberR` bi -- polite insertion will never remove existing associations prop_tryInsert_not_clobber bi k v = all (flip pairMember $ tryInsert k v bi) (toList bi) where _ = bi :: Bimap Int Integer -- an arbitrary bimap is valid prop_valid bi = valid bi where _ = bi :: Bimap Int Integer -- if x maps to y, then y maps to x prop_member_twin bi = flip all (toList bi) $ \(x, y) -> and [ (bi ! x) `memberR` bi , (bi !> y) `member` bi ] where _ = bi :: Bimap Int Integer -- deleting an element removes it from the map prop_delete bi = flip all (toList bi) $ \(x, y) -> and [ x `notMember` delete x bi , y `notMemberR` deleteR y bi ] where _ = bi :: Bimap Int Integer -- deleting an element removes its twin from the map prop_delete_twin bi = flip all (toList bi) $ \(x, y) -> and [ (bi ! x) `notMemberR` delete x bi , (bi !> y) `notMember` deleteR y bi ] where _ = bi :: Bimap Int Integer -- a singleton bimap is valid, has one association, and the two -- given values map to each other prop_singleton x y = let bi = singleton x y in and [ valid bi , (x, y) `pairMember` bi , (bi ! x) == y , (bi !> y) == x , size bi == 1 ] where _ = (x, y) :: (Int, Integer) -- an always-true filter makes no changes prop_filter_true bi = bi == filter (curry $ const True) bi where _ = bi :: Bimap Int Integer -- an always-false filter gives an empty result prop_filter_false bi = null $ filter (curry $ const False) bi where _ = bi :: Bimap Int Integer -- all elements of the projection satisfy the predicate, and all -- elements of the rejection do not prop_partition_agree bi (FilterFunc _ ff) = and [ all ( uncurry ff) (toList projection) , all (not . uncurry ff) (toList rejection) ] where _ = bi :: Bimap Int Integer (projection, rejection) = partition ff bi -- the two halves of a partition are disjoint prop_partition_disjoint bi (FilterFunc _ ff) = S.null $ S.intersection (asSet projection) (asSet rejection) where _ = bi :: Bimap Int Integer (projection, rejection) = partition ff bi asSet = S.fromList . toList -- the two halves of a partition contain the elements of the original -- bimap prop_partition_union bi (FilterFunc _ ff) = (==) (asSet bi) $ S.union (asSet projection) (asSet rejection) where _ = bi :: Bimap Int Integer (projection, rejection) = partition ff bi asSet = S.fromList . toList -- the two halves of a partition agree with individual filters prop_partition_filter bi (FilterFunc _ ff) = and [ projection == filter ( ff) bi , rejection == filter (not .: ff) bi ] where _ = bi :: Bimap Int Integer (projection, rejection) = partition ff bi -- partition and filter produce valid results prop_partition_filter_valid bi (FilterFunc _ ff) = all valid [ projection , rejection , filter ( ff) bi , filter (not .: ff) bi ] where _ = bi :: Bimap Int Integer (projection, rejection) = partition ff bi -- twist is its own inverse prop_twist_twist bi = bi == (twist . twist $ bi) where _ = bi :: Bimap Int Integer -- the property (fromList == fromAList . reverse) only holds -- if either the left or right values are all distinct prop_fromList_fromAList xs = and [ fromList ys == fromAList rys , fromList rys == fromAList ys ] where ys = xs `zip` [1..] :: [(Int, Integer)] rys = reverse ys swap (x, y) = (y, x) -- deleteFindMin and deleteMin agree prop_deleteMin_is_delete bi = not (null bi) ==> snd (deleteFindMin bi) == deleteMin bi where _ = bi :: Bimap Int Integer -- deleteFindMin and findMin agree prop_deleteMin_is_find bi = not (null bi) ==> fst (deleteFindMin bi) == findMin bi where _ = bi :: Bimap Int Integer -- elements removed by deleteFindMin are no longer in the bimap prop_deleteMin_deletes bi = not (null bi) ==> fst (deleteFindMin bi) `pairNotMember` snd (deleteFindMin bi) where _ = bi :: Bimap Int Integer -- findMin finds a member of the map prop_findMin_member bi = not (null bi) ==> findMin bi `pairMember` bi where _ = bi :: Bimap Int Integer -- the minimum of a singleton bimap is its contents prop_singleton_is_findMin x y = findMin bi == (x, y) where bi :: Bimap Int Integer bi = singleton x y -- deleting the minimum of a singleton leaves it empty prop_singleton_deleteMin_empty x y = null (deleteMin bi) where bi :: Bimap Int Integer bi = singleton x y -- the minimum of a bimap is <= all other elements prop_findMin_is_minimal bi = all (\ (a, _) -> a >= x) lst where lst = toList bi _ = bi :: Bimap Int Integer x = fst . findMin $ bi prop_deleteMinR_is_delete bi = not (null bi) ==> snd (deleteFindMinR bi) == deleteMinR bi where _ = bi :: Bimap Int Integer prop_deleteMinR_is_find bi = not (null bi) ==> fst (deleteFindMinR bi) == findMinR bi where _ = bi :: Bimap Int Integer prop_deleteMinR_deletes bi = not (null bi) ==> (swap . fst) (deleteFindMinR bi) `pairNotMember` snd (deleteFindMinR bi) where _ = bi :: Bimap Int Integer prop_findMinR_member bi = not (null bi) ==> swap (findMinR bi) `pairMember` bi where _ = bi :: Bimap Int Integer prop_singleton_is_findMinR x y = findMinR bi == (y, x) where bi :: Bimap Int Integer bi = singleton x y prop_singleton_deleteMinR_empty x y = null (deleteMinR bi) where bi :: Bimap Int Integer bi = singleton x y prop_findMinR_is_minimal bi = all (\ (_, b) -> b >= y) lst where lst = toList bi _ = bi :: Bimap Int Integer y = fst . findMinR $ bi prop_deleteMax_is_delete bi = not (null bi) ==> snd (deleteFindMax bi) == deleteMax bi where _ = bi :: Bimap Int Integer prop_deleteMax_is_find bi = not (null bi) ==> fst (deleteFindMax bi) == findMax bi where _ = bi :: Bimap Int Integer prop_deleteMax_deletes bi = not (null bi) ==> fst (deleteFindMax bi) `pairNotMember` snd (deleteFindMax bi) where _ = bi :: Bimap Int Integer prop_findMax_member bi = not (null bi) ==> findMax bi `pairMember` bi where _ = bi :: Bimap Int Integer prop_singleton_is_findMax x y = findMax bi == (x, y) where bi :: Bimap Int Integer bi = singleton x y prop_singleton_deleteMax_empty x y = null (deleteMax bi) where bi :: Bimap Int Integer bi = singleton x y prop_findMax_is_maximal bi = all (\ (a, _) -> a <= x) lst where lst = toList bi _ = bi :: Bimap Int Integer x = fst . findMax $ bi prop_deleteMaxR_is_delete bi = not (null bi) ==> snd (deleteFindMaxR bi) == deleteMaxR bi where _ = bi :: Bimap Int Integer prop_deleteMaxR_is_find bi = not (null bi) ==> fst (deleteFindMaxR bi) == findMaxR bi where _ = bi :: Bimap Int Integer prop_deleteMaxR_deletes bi = not (null bi) ==> (swap . fst) (deleteFindMaxR bi) `pairNotMember` snd (deleteFindMaxR bi) where _ = bi :: Bimap Int Integer prop_findMaxR_member bi = not (null bi) ==> swap (findMaxR bi) `pairMember` bi where _ = bi :: Bimap Int Integer prop_singleton_is_findMaxR x y = findMaxR bi == (y, x) where bi :: Bimap Int Integer bi = singleton x y prop_singleton_deleteMaxR_empty x y = null (deleteMaxR bi) where bi :: Bimap Int Integer bi = singleton x y prop_findMaxR_is_maximal bi = all (\ (_, b) -> b <= y) lst where lst = toList bi _ = bi :: Bimap Int Integer y = fst . findMaxR $ bi prop_deleteMin_is_valid bi = not (null bi) ==> valid (deleteMin bi) where _ = bi :: Bimap Int Integer prop_deleteFindMin_is_valid bi = not (null bi) ==> valid (snd $ deleteFindMin bi) where _ = bi :: Bimap Int Integer prop_deleteMinR_is_valid bi = not (null bi) ==> valid (deleteMinR bi) where _ = bi :: Bimap Int Integer prop_deleteFindMinR_is_valid bi = not (null bi) ==> valid (snd $ deleteFindMinR bi) where _ = bi :: Bimap Int Integer prop_deleteMax_is_valid bi = not (null bi) ==> valid (deleteMax bi) where _ = bi :: Bimap Int Integer prop_deleteFindMax_is_valid bi = not (null bi) ==> valid (snd $ deleteFindMax bi) where _ = bi :: Bimap Int Integer prop_deleteMaxR_is_valid bi = not (null bi) ==> valid (deleteMaxR bi) where _ = bi :: Bimap Int Integer prop_deleteFindMaxR_is_valid bi = not (null bi) ==> valid (snd $ deleteFindMaxR bi) where _ = bi :: Bimap Int Integer prop_map_preserve_keys bi = (Data.List.sort $ P.map f $ keys bi) == (keys $ map f bi) where f = (4/) -- This is an arbitrary function _ = bi :: Bimap Double Integer prop_map_preserve_lookup bi v = (lookup (f v) $ map f bi) == (lookup v bi :: Maybe Integer) where f = (1-) _ = bi :: Bimap Int Integer prop_map_preserve_right_keys bi = (Data.List.sort $ P.map f $ keysR bi) == (keysR $ mapR f bi) where f = (4/) -- This is an arbitrary function _ = bi :: Bimap Int Double prop_map_preserve_lookupR bi v = (lookup v $ mapR f bi) == (f <$> lookup v bi :: Maybe Integer) where f = (1-) _ = bi :: Bimap Int Integer prop_mapMonotonic_preserve_keys bi = (P.map f $ keys bi) == (keys $ mapMonotonic f bi) where f = (3+) -- This is an arbitrary monotonic function _ = bi :: Bimap Double Integer prop_mapMonotonic_preserve_lookup bi v = (lookup (f v) $ mapMonotonic f bi) == (lookup v bi :: Maybe Integer) where f = (2*) _ = bi :: Bimap Int Integer prop_mapMontonic_preserve_right_keys bi = (P.map f $ keysR bi) == (keysR $ mapMonotonicR f bi) where f = (^2) -- This is an arbitrary monotonic function _ = bi :: Bimap Int Double prop_mapMonotonic_preserve_lookupR bi v = (lookup v $ mapMonotonicR f bi) == (f <$> lookup v bi :: Maybe Integer) where f = (1-) _ = bi :: Bimap Int Integer