{-# LANGUAGE CPP #-} #ifndef MIN_VERSION_semigroups #define MIN_VERSION_semigroups(x,y,z) 0 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2011-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifoldable ( Bifoldable(..) , bifoldr' , bifoldrM , bifoldl' , bifoldlM , bitraverse_ , bifor_ , bimapM_ , biforM_ , bisequenceA_ , bisequence_ , biList , biconcat , biconcatMap , biany , biall ) where import Control.Applicative #if MIN_VERSION_semigroups(0,16,2) import Data.Semigroup #else import Data.Monoid #endif #ifdef MIN_VERSION_tagged import Data.Tagged #endif -- | Minimal definition either 'bifoldr' or 'bifoldMap' -- | 'Bifoldable' identifies foldable structures with two different varieties of -- elements. Common examples are 'Either' and '(,)': -- -- > instance Bifoldable Either where -- > bifoldMap f _ (Left a) = f a -- > bifoldMap _ g (Right b) = g b -- > -- > instance Bifoldable (,) where -- > bifoldr f g z (a, b) = f a (g b z) -- -- When defining more than the minimal set of definitions, one should ensure -- that the following identities hold: -- -- @ -- 'bifold' ≡ 'bifoldMap' 'id' 'id' -- 'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty' -- 'bifoldr' f g z t ≡ 'appEndo' ('bifoldMap' (Endo . f) (Endo . g) t) z -- @ class Bifoldable p where -- | Combines the elements of a structure using a monoid. -- -- @'bifold' ≡ 'bifoldMap' 'id' 'id'@ bifold :: Monoid m => p m m -> m bifold = bifoldMap id id {-# INLINE bifold #-} -- | Combines the elements of a structure, given ways of mapping them to a -- common monoid. -- -- @'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty'@ bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m bifoldMap f g = bifoldr (mappend . f) (mappend . g) mempty {-# INLINE bifoldMap #-} -- | Combines the elements of a structure in a right associative manner. Given -- a hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a -- list of all elements of a structure in order, the following would hold: -- -- @'bifoldr' f g z ≡ 'foldr' ('either' f g) z . toEitherList@ bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c bifoldr f g z t = appEndo (bifoldMap (Endo . f) (Endo . g) t) z {-# INLINE bifoldr #-} -- | Combines the elments of a structure in a left associative manner. Given a -- hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a -- list of all elements of a structure in order, the following would hold: -- -- @'bifoldl' f g z ≡ 'foldl' (\acc -> 'either' (f acc) (g acc)) z . toEitherList@ bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c bifoldl f g z t = appEndo (getDual (bifoldMap (Dual . Endo . flip f) (Dual . Endo . flip g) t)) z {-# INLINE bifoldl #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 708 {-# MINIMAL bifoldr | bifoldMap #-} #endif #if MIN_VERSION_semigroups(0,16,2) instance Bifoldable Arg where bifoldMap f g (Arg a b) = f a `mappend` g b #endif instance Bifoldable (,) where bifoldMap f g ~(a, b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable Const where bifoldMap f _ (Const a) = f a {-# INLINE bifoldMap #-} instance Bifoldable ((,,) x) where bifoldMap f g ~(_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,) x y) where bifoldMap f g ~(_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,) x y z) where bifoldMap f g ~(_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,,) x y z w) where bifoldMap f g ~(_,_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,,,) x y z w v) where bifoldMap f g ~(_,_,_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} #ifdef MIN_VERSION_tagged instance Bifoldable Tagged where bifoldMap _ g (Tagged b) = g b {-# INLINE bifoldMap #-} #endif instance Bifoldable Either where bifoldMap f _ (Left a) = f a bifoldMap _ g (Right b) = g b {-# INLINE bifoldMap #-} -- | As 'bifoldr', but strict in the result of the reduction functions at each -- step. bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c bifoldr' f g z0 xs = bifoldl f' g' id xs z0 where f' k x z = k $! f x z g' k x z = k $! g x z {-# INLINE bifoldr' #-} -- | Right associative monadic bifold over a structure. bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c bifoldrM f g z0 xs = bifoldl f' g' return xs z0 where f' k x z = f x z >>= k g' k x z = g x z >>= k {-# INLINE bifoldrM #-} -- | As 'bifoldl', but strict in the result of the reductionf unctions at each -- step. bifoldl':: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a bifoldl' f g z0 xs = bifoldr f' g' id xs z0 where f' x k z = k $! f z x g' x k z = k $! g z x {-# INLINE bifoldl' #-} -- | Left associative monadic bifold over a structure. bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a bifoldlM f g z0 xs = bifoldr f' g' return xs z0 where f' x k z = f z x >>= k g' x k z = g z x >>= k {-# INLINE bifoldlM #-} -- | As 'Data.Bitraversable.bitraverse', but ignores the results of the -- functions, merely performing the "actions". bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () bitraverse_ f g = bifoldr ((*>) . f) ((*>) . g) (pure ()) {-# INLINE bitraverse_ #-} -- | As 'bitraverse_', but with the structure as the primary argument. bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () bifor_ t f g = bitraverse_ f g t {-# INLINE bifor_ #-} -- | As 'Data.Bitraversable.bimapM', but ignores the results of the functions, -- merely performing -- the "actions". bimapM_:: (Bifoldable t, Monad m) => (a -> m c) -> (b -> m d) -> t a b -> m () bimapM_ f g = bifoldr ((>>) . f) ((>>) . g) (return ()) {-# INLINE bimapM_ #-} -- | As 'bimapM_', but with the structure as the primary argument. biforM_ :: (Bifoldable t, Monad m) => t a b -> (a -> m c) -> (b -> m d) -> m () biforM_ t f g = bimapM_ f g t {-# INLINE biforM_ #-} -- | As 'Data.Bitraversable.bisequenceA', but ignores the results of the actions. bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () bisequenceA_ = bifoldr (*>) (*>) (pure ()) {-# INLINE bisequenceA_ #-} -- | As 'Data.Bitraversable.bisequence', but ignores the results of the actions. bisequence_ :: (Bifoldable t, Monad m) => t (m a) (m b) -> m () bisequence_ = bifoldr (>>) (>>) (return ()) {-# INLINE bisequence_ #-} -- | Collects the list of elements of a structure in order. biList :: Bifoldable t => t a a -> [a] biList = bifoldr (:) (:) [] {-# INLINE biList #-} -- | Reduces a structure of lists to the concatenation of those lists. biconcat :: Bifoldable t => t [a] [a] -> [a] biconcat = bifold {-# INLINE biconcat #-} -- | Given a means of mapping the elements of a structure to lists, computes the -- concatenation of all such lists in order. biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c] biconcatMap = bifoldMap {-# INLINE biconcatMap #-} -- | Determines whether any element of the structure satisfies the appropriate -- predicate. biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool biany p q = getAny . bifoldMap (Any . p) (Any . q) {-# INLINE biany #-} -- | Determines whether all elements of the structure satisfy the appropriate -- predicate. biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool biall p q = getAll . bifoldMap (All . p) (All . q) {-# INLINE biall #-}