module Data.Biapplicative (
Biapplicative(..)
, (<<$>>)
, (<<**>>)
, biliftA2
, biliftA3
, module Data.Bifunctor
) where
import Control.Applicative
import Data.Bifunctor
import Data.Bifunctor.Apply ((<<$>>))
import Data.Monoid
import Data.Tagged
infixl 4 <<*>>, <<*, *>>, <<**>>
class Bifunctor p => Biapplicative p where
bipure :: a -> b -> p a b
(<<*>>) :: p (a -> b) (c -> d) -> p a c -> p b d
(*>>) :: p a b -> p c d -> p c d
a *>> b = bimap (const id) (const id) <<$>> a <<*>> b
(<<*) :: p a b -> p c d -> p a b
a <<* b = bimap const const <<$>> a <<*>> b
(<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d
(<<**>>) = biliftA2 (flip id) (flip id)
biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f
biliftA2 f g a b = bimap f g <<$>> a <<*>> b
biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h
biliftA3 f g a b c = bimap f g <<$>> a <<*>> b <<*>> c
instance Biapplicative (,) where
bipure = (,)
(f, g) <<*>> (a, b) = (f a, g b)
instance Monoid x => Biapplicative ((,,) x) where
bipure = (,,) mempty
(x, f, g) <<*>> (x', a, b) = (mappend x x', f a, g b)
instance (Monoid x, Monoid y) => Biapplicative ((,,,) x y) where
bipure = (,,,) mempty mempty
(x, y, f, g) <<*>> (x', y', a, b) = (mappend x x', mappend y y', f a, g b)
instance (Monoid x, Monoid y, Monoid z) => Biapplicative ((,,,,) x y z) where
bipure = (,,,,) mempty mempty mempty
(x, y, z, f, g) <<*>> (x', y', z', a, b) = (mappend x x', mappend y y', mappend z z', f a, g b)
instance Biapplicative Tagged where
bipure _ b = Tagged b
Tagged f <<*>> Tagged x = Tagged (f x)
instance Biapplicative Const where
bipure a _ = Const a
Const f <<*>> Const x = Const (f x)