module Data.Array.Accelerate.Smart (
Acc(..), PreAcc(..), Exp(..), PreExp(..), Boundary(..), Stencil(..), Level,
constant,
tup2, tup3, tup4, tup5, tup6, tup7, tup8, tup9,
untup2, untup3, untup4, untup5, untup6, untup7, untup8, untup9,
atup2, atup3, atup4, atup5, atup6, atup7, atup8, atup9,
unatup2, unatup3, unatup4, unatup5, unatup6, unatup7, unatup8, unatup9,
mkMinBound, mkMaxBound, mkPi,
mkSin, mkCos, mkTan,
mkAsin, mkAcos, mkAtan,
mkAsinh, mkAcosh, mkAtanh,
mkExpFloating, mkSqrt, mkLog,
mkFPow, mkLogBase,
mkTruncate, mkRound, mkFloor, mkCeiling,
mkAtan2,
mkAdd, mkSub, mkMul, mkNeg, mkAbs, mkSig, mkQuot, mkRem, mkIDiv, mkMod,
mkBAnd, mkBOr, mkBXor, mkBNot, mkBShiftL, mkBShiftR, mkBRotateL, mkBRotateR,
mkFDiv, mkRecip, mkLt, mkGt, mkLtEq, mkGtEq, mkEq, mkNEq, mkMax, mkMin,
mkLAnd, mkLOr, mkLNot,
mkOrd, mkChr, mkBoolToInt, mkFromIntegral,
($$), ($$$), ($$$$), ($$$$$),
showPreAccOp, showPreExpOp,
) where
import Prelude hiding ( exp )
import Data.List
import Data.Typeable
import Data.Array.Accelerate.Type
import Data.Array.Accelerate.Array.Sugar
import Data.Array.Accelerate.Tuple hiding ( Tuple )
import Data.Array.Accelerate.AST hiding (
PreOpenAcc(..), OpenAcc(..), Acc, Stencil(..), PreOpenExp(..), OpenExp, PreExp, Exp,
showPreAccOp, showPreExpOp )
import qualified Data.Array.Accelerate.AST as AST
import qualified Data.Array.Accelerate.Tuple as Tuple
type Level = Int
data PreAcc acc exp as where
Atag :: Arrays as
=> Level
-> PreAcc acc exp as
Pipe :: (Arrays as, Arrays bs, Arrays cs)
=> (Acc as -> acc bs)
-> (Acc bs -> acc cs)
-> acc as
-> PreAcc acc exp cs
Aforeign :: (Arrays arrs, Arrays a, Foreign f)
=> f arrs a
-> (Acc arrs -> Acc a)
-> acc arrs
-> PreAcc acc exp a
Acond :: Arrays as
=> exp Bool
-> acc as
-> acc as
-> PreAcc acc exp as
Awhile :: Arrays arrs
=> (Acc arrs -> acc (Scalar Bool))
-> (Acc arrs -> acc arrs)
-> acc arrs
-> PreAcc acc exp arrs
Atuple :: (Arrays arrs, IsTuple arrs)
=> Tuple.Atuple acc (TupleRepr arrs)
-> PreAcc acc exp arrs
Aprj :: (Arrays arrs, IsTuple arrs, Arrays a)
=> TupleIdx (TupleRepr arrs) a
-> acc arrs
-> PreAcc acc exp a
Use :: Arrays arrs
=> arrs
-> PreAcc acc exp arrs
Unit :: Elt e
=> exp e
-> PreAcc acc exp (Scalar e)
Generate :: (Shape sh, Elt e)
=> exp sh
-> (Exp sh -> exp e)
-> PreAcc acc exp (Array sh e)
Reshape :: (Shape sh, Shape sh', Elt e)
=> exp sh
-> acc (Array sh' e)
-> PreAcc acc exp (Array sh e)
Replicate :: (Slice slix, Elt e,
Typeable (SliceShape slix), Typeable (FullShape slix))
=> exp slix
-> acc (Array (SliceShape slix) e)
-> PreAcc acc exp (Array (FullShape slix) e)
Slice :: (Slice slix, Elt e,
Typeable (SliceShape slix), Typeable (FullShape slix))
=> acc (Array (FullShape slix) e)
-> exp slix
-> PreAcc acc exp (Array (SliceShape slix) e)
Map :: (Shape sh, Elt e, Elt e')
=> (Exp e -> exp e')
-> acc (Array sh e)
-> PreAcc acc exp (Array sh e')
ZipWith :: (Shape sh, Elt e1, Elt e2, Elt e3)
=> (Exp e1 -> Exp e2 -> exp e3)
-> acc (Array sh e1)
-> acc (Array sh e2)
-> PreAcc acc exp (Array sh e3)
Fold :: (Shape sh, Elt e)
=> (Exp e -> Exp e -> exp e)
-> exp e
-> acc (Array (sh:.Int) e)
-> PreAcc acc exp (Array sh e)
Fold1 :: (Shape sh, Elt e)
=> (Exp e -> Exp e -> exp e)
-> acc (Array (sh:.Int) e)
-> PreAcc acc exp (Array sh e)
FoldSeg :: (Shape sh, Elt e, Elt i, IsIntegral i)
=> (Exp e -> Exp e -> exp e)
-> exp e
-> acc (Array (sh:.Int) e)
-> acc (Segments i)
-> PreAcc acc exp (Array (sh:.Int) e)
Fold1Seg :: (Shape sh, Elt e, Elt i, IsIntegral i)
=> (Exp e -> Exp e -> exp e)
-> acc (Array (sh:.Int) e)
-> acc (Segments i)
-> PreAcc acc exp (Array (sh:.Int) e)
Scanl :: Elt e
=> (Exp e -> Exp e -> exp e)
-> exp e
-> acc (Vector e)
-> PreAcc acc exp (Vector e)
Scanl' :: Elt e
=> (Exp e -> Exp e -> exp e)
-> exp e
-> acc (Vector e)
-> PreAcc acc exp (Vector e, Scalar e)
Scanl1 :: Elt e
=> (Exp e -> Exp e -> exp e)
-> acc (Vector e)
-> PreAcc acc exp (Vector e)
Scanr :: Elt e
=> (Exp e -> Exp e -> exp e)
-> exp e
-> acc (Vector e)
-> PreAcc acc exp (Vector e)
Scanr' :: Elt e
=> (Exp e -> Exp e -> exp e)
-> exp e
-> acc (Vector e)
-> PreAcc acc exp (Vector e, Scalar e)
Scanr1 :: Elt e
=> (Exp e -> Exp e -> exp e)
-> acc (Vector e)
-> PreAcc acc exp (Vector e)
Permute :: (Shape sh, Shape sh', Elt e)
=> (Exp e -> Exp e -> exp e)
-> acc (Array sh' e)
-> (Exp sh -> exp sh')
-> acc (Array sh e)
-> PreAcc acc exp (Array sh' e)
Backpermute :: (Shape sh, Shape sh', Elt e)
=> exp sh'
-> (Exp sh' -> exp sh)
-> acc (Array sh e)
-> PreAcc acc exp (Array sh' e)
Stencil :: (Shape sh, Elt a, Elt b, Stencil sh a stencil)
=> (stencil -> exp b)
-> Boundary a
-> acc (Array sh a)
-> PreAcc acc exp (Array sh b)
Stencil2 :: (Shape sh, Elt a, Elt b, Elt c,
Stencil sh a stencil1, Stencil sh b stencil2)
=> (stencil1 -> stencil2 -> exp c)
-> Boundary a
-> acc (Array sh a)
-> Boundary b
-> acc (Array sh b)
-> PreAcc acc exp (Array sh c)
newtype Acc a = Acc (PreAcc Acc Exp a)
deriving instance Typeable Acc
data PreExp acc exp t where
Tag :: Elt t
=> Level
-> PreExp acc exp t
Const :: Elt t
=> t
-> PreExp acc exp t
Tuple :: (Elt t, IsTuple t)
=> Tuple.Tuple exp (TupleRepr t)
-> PreExp acc exp t
Prj :: (Elt t, IsTuple t, Elt e)
=> TupleIdx (TupleRepr t) e
-> exp t
-> PreExp acc exp e
IndexNil :: PreExp acc exp Z
IndexCons :: (Slice sl, Elt a)
=> exp sl
-> exp a
-> PreExp acc exp (sl:.a)
IndexHead :: (Slice sl, Elt a)
=> exp (sl:.a)
-> PreExp acc exp a
IndexTail :: (Slice sl, Elt a)
=> exp (sl:.a)
-> PreExp acc exp sl
IndexAny :: Shape sh
=> PreExp acc exp (Any sh)
ToIndex :: Shape sh
=> exp sh
-> exp sh
-> PreExp acc exp Int
FromIndex :: Shape sh
=> exp sh
-> exp Int
-> PreExp acc exp sh
Cond :: Elt t
=> exp Bool
-> exp t
-> exp t
-> PreExp acc exp t
While :: Elt t
=> (Exp t -> exp Bool)
-> (Exp t -> exp t)
-> exp t
-> PreExp acc exp t
PrimConst :: Elt t
=> PrimConst t
-> PreExp acc exp t
PrimApp :: (Elt a, Elt r)
=> PrimFun (a -> r)
-> exp a
-> PreExp acc exp r
Index :: (Shape sh, Elt t)
=> acc (Array sh t)
-> exp sh
-> PreExp acc exp t
LinearIndex :: (Shape sh, Elt t)
=> acc (Array sh t)
-> exp Int
-> PreExp acc exp t
Shape :: (Shape sh, Elt e)
=> acc (Array sh e)
-> PreExp acc exp sh
ShapeSize :: Shape sh
=> exp sh
-> PreExp acc exp Int
Intersect :: Shape sh
=> exp sh
-> exp sh
-> PreExp acc exp sh
Foreign :: (Elt x, Elt y, Foreign f)
=> f x y
-> (Exp x -> Exp y)
-> exp x
-> PreExp acc exp y
newtype Exp t = Exp (PreExp Acc Exp t)
deriving instance Typeable Exp
atup2 :: (Arrays a, Arrays b) => (Acc a, Acc b) -> Acc (a, b)
atup2 (x1, x2) = Acc $ Atuple (NilAtup `SnocAtup` x1 `SnocAtup` x2)
atup3 :: (Arrays a, Arrays b, Arrays c) => (Acc a, Acc b, Acc c) -> Acc (a, b, c)
atup3 (x1, x2, x3) = Acc $ Atuple (NilAtup `SnocAtup` x1 `SnocAtup` x2 `SnocAtup` x3)
atup4 :: (Arrays a, Arrays b, Arrays c, Arrays d)
=> (Acc a, Acc b, Acc c, Acc d) -> Acc (a, b, c, d)
atup4 (x1, x2, x3, x4)
= Acc $ Atuple (NilAtup `SnocAtup` x1 `SnocAtup` x2 `SnocAtup` x3 `SnocAtup` x4)
atup5 :: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e)
=> (Acc a, Acc b, Acc c, Acc d, Acc e) -> Acc (a, b, c, d, e)
atup5 (x1, x2, x3, x4, x5)
= Acc $ Atuple $
NilAtup `SnocAtup` x1 `SnocAtup` x2 `SnocAtup` x3 `SnocAtup` x4 `SnocAtup` x5
atup6 :: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f)
=> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f) -> Acc (a, b, c, d, e, f)
atup6 (x1, x2, x3, x4, x5, x6)
= Acc $ Atuple $
NilAtup `SnocAtup` x1 `SnocAtup` x2 `SnocAtup` x3
`SnocAtup` x4 `SnocAtup` x5 `SnocAtup` x6
atup7 :: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f, Arrays g)
=> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f, Acc g)
-> Acc (a, b, c, d, e, f, g)
atup7 (x1, x2, x3, x4, x5, x6, x7)
= Acc $ Atuple $
NilAtup `SnocAtup` x1 `SnocAtup` x2 `SnocAtup` x3
`SnocAtup` x4 `SnocAtup` x5 `SnocAtup` x6 `SnocAtup` x7
atup8 :: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f, Arrays g, Arrays h)
=> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f, Acc g, Acc h)
-> Acc (a, b, c, d, e, f, g, h)
atup8 (x1, x2, x3, x4, x5, x6, x7, x8)
= Acc $ Atuple $
NilAtup `SnocAtup` x1 `SnocAtup` x2 `SnocAtup` x3 `SnocAtup` x4
`SnocAtup` x5 `SnocAtup` x6 `SnocAtup` x7 `SnocAtup` x8
atup9 :: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f, Arrays g, Arrays h, Arrays i)
=> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f, Acc g, Acc h, Acc i)
-> Acc (a, b, c, d, e, f, g, h, i)
atup9 (x1, x2, x3, x4, x5, x6, x7, x8, x9)
= Acc $ Atuple $
NilAtup `SnocAtup` x1 `SnocAtup` x2 `SnocAtup` x3 `SnocAtup` x4
`SnocAtup` x5 `SnocAtup` x6 `SnocAtup` x7 `SnocAtup` x8 `SnocAtup` x9
unatup2 :: (Arrays a, Arrays b) => Acc (a, b) -> (Acc a, Acc b)
unatup2 e = (Acc $ SuccTupIdx ZeroTupIdx `Aprj` e, Acc $ ZeroTupIdx `Aprj` e)
unatup3 :: (Arrays a, Arrays b, Arrays c) => Acc (a, b, c) -> (Acc a, Acc b, Acc c)
unatup3 e =
( Acc $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Aprj` e
, Acc $ SuccTupIdx ZeroTupIdx `Aprj` e
, Acc $ ZeroTupIdx `Aprj` e )
unatup4
:: (Arrays a, Arrays b, Arrays c, Arrays d)
=> Acc (a, b, c, d) -> (Acc a, Acc b, Acc c, Acc d)
unatup4 e =
( Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Aprj` e
, Acc $ SuccTupIdx ZeroTupIdx `Aprj` e
, Acc $ ZeroTupIdx `Aprj` e )
unatup5
:: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e)
=> Acc (a, b, c, d, e) -> (Acc a, Acc b, Acc c, Acc d, Acc e)
unatup5 e =
( Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Aprj` e
, Acc $ SuccTupIdx ZeroTupIdx `Aprj` e
, Acc $ ZeroTupIdx `Aprj` e )
unatup6
:: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f)
=> Acc (a, b, c, d, e, f) -> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f)
unatup6 e =
( Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Aprj` e
, Acc $ SuccTupIdx ZeroTupIdx `Aprj` e
, Acc $ ZeroTupIdx `Aprj` e )
unatup7
:: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f, Arrays g)
=> Acc (a, b, c, d, e, f, g) -> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f, Acc g)
unatup7 e =
( Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Aprj` e
, Acc $ SuccTupIdx ZeroTupIdx `Aprj` e
, Acc $ ZeroTupIdx `Aprj` e )
unatup8
:: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f, Arrays g, Arrays h)
=> Acc (a, b, c, d, e, f, g, h) -> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f, Acc g, Acc h)
unatup8 e =
( Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Aprj` e
, Acc $ SuccTupIdx ZeroTupIdx `Aprj` e
, Acc $ ZeroTupIdx `Aprj` e )
unatup9
:: (Arrays a, Arrays b, Arrays c, Arrays d, Arrays e, Arrays f, Arrays g, Arrays h, Arrays i)
=> Acc (a, b, c, d, e, f, g, h, i) -> (Acc a, Acc b, Acc c, Acc d, Acc e, Acc f, Acc g, Acc h, Acc i)
unatup9 e =
( Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Aprj` e
, Acc $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Aprj` e
, Acc $ SuccTupIdx ZeroTupIdx `Aprj` e
, Acc $ ZeroTupIdx `Aprj` e )
class (Elt (StencilRepr sh stencil), AST.Stencil sh a (StencilRepr sh stencil))
=> Stencil sh a stencil where
type StencilRepr sh stencil :: *
stencilPrj :: sh -> a -> Exp (StencilRepr sh stencil) -> stencil
instance Elt e => Stencil DIM1 e (Exp e, Exp e, Exp e) where
type StencilRepr DIM1 (Exp e, Exp e, Exp e)
= (e, e, e)
stencilPrj _ _ s = (Exp $ Prj tix2 s,
Exp $ Prj tix1 s,
Exp $ Prj tix0 s)
instance Elt e => Stencil DIM1 e (Exp e, Exp e, Exp e, Exp e, Exp e) where
type StencilRepr DIM1 (Exp e, Exp e, Exp e, Exp e, Exp e)
= (e, e, e, e, e)
stencilPrj _ _ s = (Exp $ Prj tix4 s,
Exp $ Prj tix3 s,
Exp $ Prj tix2 s,
Exp $ Prj tix1 s,
Exp $ Prj tix0 s)
instance Elt e => Stencil DIM1 e (Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e) where
type StencilRepr DIM1 (Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e)
= (e, e, e, e, e, e, e)
stencilPrj _ _ s = (Exp $ Prj tix6 s,
Exp $ Prj tix5 s,
Exp $ Prj tix4 s,
Exp $ Prj tix3 s,
Exp $ Prj tix2 s,
Exp $ Prj tix1 s,
Exp $ Prj tix0 s)
instance Elt e => Stencil DIM1 e (Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e)
where
type StencilRepr DIM1 (Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e, Exp e)
= (e, e, e, e, e, e, e, e, e)
stencilPrj _ _ s = (Exp $ Prj tix8 s,
Exp $ Prj tix7 s,
Exp $ Prj tix6 s,
Exp $ Prj tix5 s,
Exp $ Prj tix4 s,
Exp $ Prj tix3 s,
Exp $ Prj tix2 s,
Exp $ Prj tix1 s,
Exp $ Prj tix0 s)
instance (Stencil (sh:.Int) a row2,
Stencil (sh:.Int) a row1,
Stencil (sh:.Int) a row0) => Stencil (sh:.Int:.Int) a (row2, row1, row0) where
type StencilRepr (sh:.Int:.Int) (row2, row1, row0)
= (StencilRepr (sh:.Int) row2, StencilRepr (sh:.Int) row1, StencilRepr (sh:.Int) row0)
stencilPrj _ a s = (stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix2 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix1 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix0 s))
instance (Stencil (sh:.Int) a row1,
Stencil (sh:.Int) a row2,
Stencil (sh:.Int) a row3,
Stencil (sh:.Int) a row4,
Stencil (sh:.Int) a row5) => Stencil (sh:.Int:.Int) a (row1, row2, row3, row4, row5) where
type StencilRepr (sh:.Int:.Int) (row1, row2, row3, row4, row5)
= (StencilRepr (sh:.Int) row1, StencilRepr (sh:.Int) row2, StencilRepr (sh:.Int) row3,
StencilRepr (sh:.Int) row4, StencilRepr (sh:.Int) row5)
stencilPrj _ a s = (stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix4 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix3 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix2 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix1 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix0 s))
instance (Stencil (sh:.Int) a row1,
Stencil (sh:.Int) a row2,
Stencil (sh:.Int) a row3,
Stencil (sh:.Int) a row4,
Stencil (sh:.Int) a row5,
Stencil (sh:.Int) a row6,
Stencil (sh:.Int) a row7)
=> Stencil (sh:.Int:.Int) a (row1, row2, row3, row4, row5, row6, row7) where
type StencilRepr (sh:.Int:.Int) (row1, row2, row3, row4, row5, row6, row7)
= (StencilRepr (sh:.Int) row1, StencilRepr (sh:.Int) row2, StencilRepr (sh:.Int) row3,
StencilRepr (sh:.Int) row4, StencilRepr (sh:.Int) row5, StencilRepr (sh:.Int) row6,
StencilRepr (sh:.Int) row7)
stencilPrj _ a s = (stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix6 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix5 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix4 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix3 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix2 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix1 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix0 s))
instance (Stencil (sh:.Int) a row1,
Stencil (sh:.Int) a row2,
Stencil (sh:.Int) a row3,
Stencil (sh:.Int) a row4,
Stencil (sh:.Int) a row5,
Stencil (sh:.Int) a row6,
Stencil (sh:.Int) a row7,
Stencil (sh:.Int) a row8,
Stencil (sh:.Int) a row9)
=> Stencil (sh:.Int:.Int) a (row1, row2, row3, row4, row5, row6, row7, row8, row9) where
type StencilRepr (sh:.Int:.Int) (row1, row2, row3, row4, row5, row6, row7, row8, row9)
= (StencilRepr (sh:.Int) row1, StencilRepr (sh:.Int) row2, StencilRepr (sh:.Int) row3,
StencilRepr (sh:.Int) row4, StencilRepr (sh:.Int) row5, StencilRepr (sh:.Int) row6,
StencilRepr (sh:.Int) row7, StencilRepr (sh:.Int) row8, StencilRepr (sh:.Int) row9)
stencilPrj _ a s = (stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix8 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix7 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix6 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix5 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix4 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix3 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix2 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix1 s),
stencilPrj (undefined::(sh:.Int)) a (Exp $ Prj tix0 s))
tix0 :: Elt s => TupleIdx (t, s) s
tix0 = ZeroTupIdx
tix1 :: Elt s => TupleIdx ((t, s), s1) s
tix1 = SuccTupIdx tix0
tix2 :: Elt s => TupleIdx (((t, s), s1), s2) s
tix2 = SuccTupIdx tix1
tix3 :: Elt s => TupleIdx ((((t, s), s1), s2), s3) s
tix3 = SuccTupIdx tix2
tix4 :: Elt s => TupleIdx (((((t, s), s1), s2), s3), s4) s
tix4 = SuccTupIdx tix3
tix5 :: Elt s => TupleIdx ((((((t, s), s1), s2), s3), s4), s5) s
tix5 = SuccTupIdx tix4
tix6 :: Elt s => TupleIdx (((((((t, s), s1), s2), s3), s4), s5), s6) s
tix6 = SuccTupIdx tix5
tix7 :: Elt s => TupleIdx ((((((((t, s), s1), s2), s3), s4), s5), s6), s7) s
tix7 = SuccTupIdx tix6
tix8 :: Elt s => TupleIdx (((((((((t, s), s1), s2), s3), s4), s5), s6), s7), s8) s
tix8 = SuccTupIdx tix7
constant :: Elt t => t -> Exp t
constant = Exp . Const
tup2 :: (Elt a, Elt b) => (Exp a, Exp b) -> Exp (a, b)
tup2 (x1, x2) = Exp $ Tuple (NilTup `SnocTup` x1 `SnocTup` x2)
tup3 :: (Elt a, Elt b, Elt c) => (Exp a, Exp b, Exp c) -> Exp (a, b, c)
tup3 (x1, x2, x3) = Exp $ Tuple (NilTup `SnocTup` x1 `SnocTup` x2 `SnocTup` x3)
tup4 :: (Elt a, Elt b, Elt c, Elt d)
=> (Exp a, Exp b, Exp c, Exp d) -> Exp (a, b, c, d)
tup4 (x1, x2, x3, x4)
= Exp $ Tuple (NilTup `SnocTup` x1 `SnocTup` x2 `SnocTup` x3 `SnocTup` x4)
tup5 :: (Elt a, Elt b, Elt c, Elt d, Elt e)
=> (Exp a, Exp b, Exp c, Exp d, Exp e) -> Exp (a, b, c, d, e)
tup5 (x1, x2, x3, x4, x5)
= Exp $ Tuple $
NilTup `SnocTup` x1 `SnocTup` x2 `SnocTup` x3 `SnocTup` x4 `SnocTup` x5
tup6 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f)
=> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f) -> Exp (a, b, c, d, e, f)
tup6 (x1, x2, x3, x4, x5, x6)
= Exp $ Tuple $
NilTup `SnocTup` x1 `SnocTup` x2 `SnocTup` x3 `SnocTup` x4 `SnocTup` x5 `SnocTup` x6
tup7 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f, Elt g)
=> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f, Exp g)
-> Exp (a, b, c, d, e, f, g)
tup7 (x1, x2, x3, x4, x5, x6, x7)
= Exp $ Tuple $
NilTup `SnocTup` x1 `SnocTup` x2 `SnocTup` x3
`SnocTup` x4 `SnocTup` x5 `SnocTup` x6 `SnocTup` x7
tup8 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f, Elt g, Elt h)
=> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f, Exp g, Exp h)
-> Exp (a, b, c, d, e, f, g, h)
tup8 (x1, x2, x3, x4, x5, x6, x7, x8)
= Exp $ Tuple $
NilTup `SnocTup` x1 `SnocTup` x2 `SnocTup` x3 `SnocTup` x4
`SnocTup` x5 `SnocTup` x6 `SnocTup` x7 `SnocTup` x8
tup9 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f, Elt g, Elt h, Elt i)
=> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f, Exp g, Exp h, Exp i)
-> Exp (a, b, c, d, e, f, g, h, i)
tup9 (x1, x2, x3, x4, x5, x6, x7, x8, x9)
= Exp $ Tuple $
NilTup `SnocTup` x1 `SnocTup` x2 `SnocTup` x3 `SnocTup` x4
`SnocTup` x5 `SnocTup` x6 `SnocTup` x7 `SnocTup` x8 `SnocTup` x9
untup2 :: (Elt a, Elt b) => Exp (a, b) -> (Exp a, Exp b)
untup2 e = (Exp $ SuccTupIdx ZeroTupIdx `Prj` e, Exp $ ZeroTupIdx `Prj` e)
untup3 :: (Elt a, Elt b, Elt c) => Exp (a, b, c) -> (Exp a, Exp b, Exp c)
untup3 e = (Exp $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Prj` e,
Exp $ SuccTupIdx ZeroTupIdx `Prj` e,
Exp $ ZeroTupIdx `Prj` e)
untup4 :: (Elt a, Elt b, Elt c, Elt d)
=> Exp (a, b, c, d) -> (Exp a, Exp b, Exp c, Exp d)
untup4 e = (Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Prj` e,
Exp $ SuccTupIdx ZeroTupIdx `Prj` e,
Exp $ ZeroTupIdx `Prj` e)
untup5 :: (Elt a, Elt b, Elt c, Elt d, Elt e)
=> Exp (a, b, c, d, e) -> (Exp a, Exp b, Exp c, Exp d, Exp e)
untup5 e = (Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Prj` e,
Exp $ SuccTupIdx ZeroTupIdx `Prj` e,
Exp $ ZeroTupIdx `Prj` e)
untup6 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f)
=> Exp (a, b, c, d, e, f) -> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f)
untup6 e = (Exp $
SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Prj` e,
Exp $ SuccTupIdx ZeroTupIdx `Prj` e,
Exp $ ZeroTupIdx `Prj` e)
untup7 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f, Elt g)
=> Exp (a, b, c, d, e, f, g) -> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f, Exp g)
untup7 e = (Exp $
SuccTupIdx
(SuccTupIdx
(SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))) `Prj` e,
Exp $
SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Prj` e,
Exp $ SuccTupIdx ZeroTupIdx `Prj` e,
Exp $ ZeroTupIdx `Prj` e)
untup8 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f, Elt g, Elt h)
=> Exp (a, b, c, d, e, f, g, h) -> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f, Exp g, Exp h)
untup8 e = (Exp $
SuccTupIdx
(SuccTupIdx
(SuccTupIdx
(SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))))) `Prj` e,
Exp $
SuccTupIdx
(SuccTupIdx
(SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))) `Prj` e,
Exp $
SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Prj` e,
Exp $ SuccTupIdx ZeroTupIdx `Prj` e,
Exp $ ZeroTupIdx `Prj` e)
untup9 :: (Elt a, Elt b, Elt c, Elt d, Elt e, Elt f, Elt g, Elt h, Elt i)
=> Exp (a, b, c, d, e, f, g, h, i) -> (Exp a, Exp b, Exp c, Exp d, Exp e, Exp f, Exp g, Exp h, Exp i)
untup9 e = (Exp $
SuccTupIdx
(SuccTupIdx
(SuccTupIdx
(SuccTupIdx
(SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))))) `Prj` e,
Exp $
SuccTupIdx
(SuccTupIdx
(SuccTupIdx
(SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))))) `Prj` e,
Exp $
SuccTupIdx
(SuccTupIdx
(SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))))) `Prj` e,
Exp $
SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx))) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx (SuccTupIdx ZeroTupIdx)) `Prj` e,
Exp $ SuccTupIdx (SuccTupIdx ZeroTupIdx) `Prj` e,
Exp $ SuccTupIdx ZeroTupIdx `Prj` e,
Exp $ ZeroTupIdx `Prj` e)
mkMinBound :: (Elt t, IsBounded t) => Exp t
mkMinBound = Exp $ PrimConst (PrimMinBound boundedType)
mkMaxBound :: (Elt t, IsBounded t) => Exp t
mkMaxBound = Exp $ PrimConst (PrimMaxBound boundedType)
mkPi :: (Elt r, IsFloating r) => Exp r
mkPi = Exp $ PrimConst (PrimPi floatingType)
mkSin :: (Elt t, IsFloating t) => Exp t -> Exp t
mkSin x = Exp $ PrimSin floatingType `PrimApp` x
mkCos :: (Elt t, IsFloating t) => Exp t -> Exp t
mkCos x = Exp $ PrimCos floatingType `PrimApp` x
mkTan :: (Elt t, IsFloating t) => Exp t -> Exp t
mkTan x = Exp $ PrimTan floatingType `PrimApp` x
mkAsin :: (Elt t, IsFloating t) => Exp t -> Exp t
mkAsin x = Exp $ PrimAsin floatingType `PrimApp` x
mkAcos :: (Elt t, IsFloating t) => Exp t -> Exp t
mkAcos x = Exp $ PrimAcos floatingType `PrimApp` x
mkAtan :: (Elt t, IsFloating t) => Exp t -> Exp t
mkAtan x = Exp $ PrimAtan floatingType `PrimApp` x
mkAsinh :: (Elt t, IsFloating t) => Exp t -> Exp t
mkAsinh x = Exp $ PrimAsinh floatingType `PrimApp` x
mkAcosh :: (Elt t, IsFloating t) => Exp t -> Exp t
mkAcosh x = Exp $ PrimAcosh floatingType `PrimApp` x
mkAtanh :: (Elt t, IsFloating t) => Exp t -> Exp t
mkAtanh x = Exp $ PrimAtanh floatingType `PrimApp` x
mkExpFloating :: (Elt t, IsFloating t) => Exp t -> Exp t
mkExpFloating x = Exp $ PrimExpFloating floatingType `PrimApp` x
mkSqrt :: (Elt t, IsFloating t) => Exp t -> Exp t
mkSqrt x = Exp $ PrimSqrt floatingType `PrimApp` x
mkLog :: (Elt t, IsFloating t) => Exp t -> Exp t
mkLog x = Exp $ PrimLog floatingType `PrimApp` x
mkFPow :: (Elt t, IsFloating t) => Exp t -> Exp t -> Exp t
mkFPow x y = Exp $ PrimFPow floatingType `PrimApp` tup2 (x, y)
mkLogBase :: (Elt t, IsFloating t) => Exp t -> Exp t -> Exp t
mkLogBase x y = Exp $ PrimLogBase floatingType `PrimApp` tup2 (x, y)
mkAdd :: (Elt t, IsNum t) => Exp t -> Exp t -> Exp t
mkAdd x y = Exp $ PrimAdd numType `PrimApp` tup2 (x, y)
mkSub :: (Elt t, IsNum t) => Exp t -> Exp t -> Exp t
mkSub x y = Exp $ PrimSub numType `PrimApp` tup2 (x, y)
mkMul :: (Elt t, IsNum t) => Exp t -> Exp t -> Exp t
mkMul x y = Exp $ PrimMul numType `PrimApp` tup2 (x, y)
mkNeg :: (Elt t, IsNum t) => Exp t -> Exp t
mkNeg x = Exp $ PrimNeg numType `PrimApp` x
mkAbs :: (Elt t, IsNum t) => Exp t -> Exp t
mkAbs x = Exp $ PrimAbs numType `PrimApp` x
mkSig :: (Elt t, IsNum t) => Exp t -> Exp t
mkSig x = Exp $ PrimSig numType `PrimApp` x
mkQuot :: (Elt t, IsIntegral t) => Exp t -> Exp t -> Exp t
mkQuot x y = Exp $ PrimQuot integralType `PrimApp` tup2 (x, y)
mkRem :: (Elt t, IsIntegral t) => Exp t -> Exp t -> Exp t
mkRem x y = Exp $ PrimRem integralType `PrimApp` tup2 (x, y)
mkIDiv :: (Elt t, IsIntegral t) => Exp t -> Exp t -> Exp t
mkIDiv x y = Exp $ PrimIDiv integralType `PrimApp` tup2 (x, y)
mkMod :: (Elt t, IsIntegral t) => Exp t -> Exp t -> Exp t
mkMod x y = Exp $ PrimMod integralType `PrimApp` tup2 (x, y)
mkBAnd :: (Elt t, IsIntegral t) => Exp t -> Exp t -> Exp t
mkBAnd x y = Exp $ PrimBAnd integralType `PrimApp` tup2 (x, y)
mkBOr :: (Elt t, IsIntegral t) => Exp t -> Exp t -> Exp t
mkBOr x y = Exp $ PrimBOr integralType `PrimApp` tup2 (x, y)
mkBXor :: (Elt t, IsIntegral t) => Exp t -> Exp t -> Exp t
mkBXor x y = Exp $ PrimBXor integralType `PrimApp` tup2 (x, y)
mkBNot :: (Elt t, IsIntegral t) => Exp t -> Exp t
mkBNot x = Exp $ PrimBNot integralType `PrimApp` x
mkBShiftL :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t
mkBShiftL x i = Exp $ PrimBShiftL integralType `PrimApp` tup2 (x, i)
mkBShiftR :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t
mkBShiftR x i = Exp $ PrimBShiftR integralType `PrimApp` tup2 (x, i)
mkBRotateL :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t
mkBRotateL x i = Exp $ PrimBRotateL integralType `PrimApp` tup2 (x, i)
mkBRotateR :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t
mkBRotateR x i = Exp $ PrimBRotateR integralType `PrimApp` tup2 (x, i)
mkFDiv :: (Elt t, IsFloating t) => Exp t -> Exp t -> Exp t
mkFDiv x y = Exp $ PrimFDiv floatingType `PrimApp` tup2 (x, y)
mkRecip :: (Elt t, IsFloating t) => Exp t -> Exp t
mkRecip x = Exp $ PrimRecip floatingType `PrimApp` x
mkTruncate :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b
mkTruncate x = Exp $ PrimTruncate floatingType integralType `PrimApp` x
mkRound :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b
mkRound x = Exp $ PrimRound floatingType integralType `PrimApp` x
mkFloor :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b
mkFloor x = Exp $ PrimFloor floatingType integralType `PrimApp` x
mkCeiling :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b
mkCeiling x = Exp $ PrimCeiling floatingType integralType `PrimApp` x
mkAtan2 :: (Elt t, IsFloating t) => Exp t -> Exp t -> Exp t
mkAtan2 x y = Exp $ PrimAtan2 floatingType `PrimApp` tup2 (x, y)
mkLt :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool
mkLt x y = Exp $ PrimLt scalarType `PrimApp` tup2 (x, y)
mkGt :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool
mkGt x y = Exp $ PrimGt scalarType `PrimApp` tup2 (x, y)
mkLtEq :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool
mkLtEq x y = Exp $ PrimLtEq scalarType `PrimApp` tup2 (x, y)
mkGtEq :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool
mkGtEq x y = Exp $ PrimGtEq scalarType `PrimApp` tup2 (x, y)
mkEq :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool
mkEq x y = Exp $ PrimEq scalarType `PrimApp` tup2 (x, y)
mkNEq :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool
mkNEq x y = Exp $ PrimNEq scalarType `PrimApp` tup2 (x, y)
mkMax :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp t
mkMax x y = Exp $ PrimMax scalarType `PrimApp` tup2 (x, y)
mkMin :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp t
mkMin x y = Exp $ PrimMin scalarType `PrimApp` tup2 (x, y)
mkLAnd :: Exp Bool -> Exp Bool -> Exp Bool
mkLAnd x y = Exp $ PrimLAnd `PrimApp` tup2 (x, y)
mkLOr :: Exp Bool -> Exp Bool -> Exp Bool
mkLOr x y = Exp $ PrimLOr `PrimApp` tup2 (x, y)
mkLNot :: Exp Bool -> Exp Bool
mkLNot x = Exp $ PrimLNot `PrimApp` x
mkOrd :: Exp Char -> Exp Int
mkOrd x = Exp $ PrimOrd `PrimApp` x
mkChr :: Exp Int -> Exp Char
mkChr x = Exp $ PrimChr `PrimApp` x
mkFromIntegral :: (Elt a, Elt b, IsIntegral a, IsNum b) => Exp a -> Exp b
mkFromIntegral x = Exp $ PrimFromIntegral integralType numType `PrimApp` x
mkBoolToInt :: Exp Bool -> Exp Int
mkBoolToInt b = Exp $ PrimBoolToInt `PrimApp` b
infixr 0 $$
($$) :: (b -> a) -> (c -> d -> b) -> c -> d -> a
(f $$ g) x y = f (g x y)
infixr 0 $$$
($$$) :: (b -> a) -> (c -> d -> e -> b) -> c -> d -> e -> a
(f $$$ g) x y z = f (g x y z)
infixr 0 $$$$
($$$$) :: (b -> a) -> (c -> d -> e -> f -> b) -> c -> d -> e -> f -> a
(f $$$$ g) x y z u = f (g x y z u)
infixr 0 $$$$$
($$$$$) :: (b -> a) -> (c -> d -> e -> f -> g -> b) -> c -> d -> e -> f -> g-> a
(f $$$$$ g) x y z u v = f (g x y z u v)
showPreAccOp :: forall acc exp arrs. PreAcc acc exp arrs -> String
showPreAccOp (Atag i) = "Atag " ++ show i
showPreAccOp (Use a) = "Use " ++ showArrays a
showPreAccOp Pipe{} = "Pipe"
showPreAccOp Acond{} = "Acond"
showPreAccOp Awhile{} = "Awhile"
showPreAccOp Atuple{} = "Atuple"
showPreAccOp Aprj{} = "Aprj"
showPreAccOp Unit{} = "Unit"
showPreAccOp Generate{} = "Generate"
showPreAccOp Reshape{} = "Reshape"
showPreAccOp Replicate{} = "Replicate"
showPreAccOp Slice{} = "Slice"
showPreAccOp Map{} = "Map"
showPreAccOp ZipWith{} = "ZipWith"
showPreAccOp Fold{} = "Fold"
showPreAccOp Fold1{} = "Fold1"
showPreAccOp FoldSeg{} = "FoldSeg"
showPreAccOp Fold1Seg{} = "Fold1Seg"
showPreAccOp Scanl{} = "Scanl"
showPreAccOp Scanl'{} = "Scanl'"
showPreAccOp Scanl1{} = "Scanl1"
showPreAccOp Scanr{} = "Scanr"
showPreAccOp Scanr'{} = "Scanr'"
showPreAccOp Scanr1{} = "Scanr1"
showPreAccOp Permute{} = "Permute"
showPreAccOp Backpermute{} = "Backpermute"
showPreAccOp Stencil{} = "Stencil"
showPreAccOp Stencil2{} = "Stencil2"
showPreAccOp Aforeign{} = "Aforeign"
showArrays :: forall arrs. Arrays arrs => arrs -> String
showArrays = display . collect (arrays (undefined::arrs)) . fromArr
where
collect :: ArraysR a -> a -> [String]
collect ArraysRunit _ = []
collect ArraysRarray arr = [showShortendArr arr]
collect (ArraysRpair r1 r2) (a1, a2) = collect r1 a1 ++ collect r2 a2
display [] = []
display [x] = x
display xs = "(" ++ intercalate ", " xs ++ ")"
showShortendArr :: Elt e => Array sh e -> String
showShortendArr arr
= show (take cutoff l) ++ if length l > cutoff then ".." else ""
where
l = toList arr
cutoff = 5
showPreExpOp :: PreExp acc exp t -> String
showPreExpOp (Const c) = "Const " ++ show c
showPreExpOp (Tag i) = "Tag" ++ show i
showPreExpOp Tuple{} = "Tuple"
showPreExpOp Prj{} = "Prj"
showPreExpOp IndexNil = "IndexNil"
showPreExpOp IndexCons{} = "IndexCons"
showPreExpOp IndexHead{} = "IndexHead"
showPreExpOp IndexTail{} = "IndexTail"
showPreExpOp IndexAny = "IndexAny"
showPreExpOp ToIndex{} = "ToIndex"
showPreExpOp FromIndex{} = "FromIndex"
showPreExpOp Cond{} = "Cond"
showPreExpOp While{} = "While"
showPreExpOp PrimConst{} = "PrimConst"
showPreExpOp PrimApp{} = "PrimApp"
showPreExpOp Index{} = "Index"
showPreExpOp LinearIndex{} = "LinearIndex"
showPreExpOp Shape{} = "Shape"
showPreExpOp ShapeSize{} = "ShapeSize"
showPreExpOp Intersect{} = "Intersect"
showPreExpOp Foreign{} = "Foreign"