{-# LANGUAGE OverlappingInstances #-} -- TLM: required by client code {-# LANGUAGE TypeOperators #-} {-# OPTIONS -fno-warn-missing-methods #-} {-# OPTIONS -fno-warn-orphans #-} -- | -- Module : Data.Array.Accelerate.Language -- Copyright : [2008..2014] Manuel M T Chakravarty, Gabriele Keller -- [2009..2014] Trevor L. McDonell -- License : BSD3 -- -- Maintainer : Manuel M T Chakravarty <chak@cse.unsw.edu.au> -- Stability : experimental -- Portability : non-portable (GHC extensions) -- -- We use the dictionary view of overloaded operations (such as arithmetic and -- bit manipulation) to reify such expressions. With non-overloaded -- operations (such as, the logical connectives) and partially overloaded -- operations (such as comparisons), we use the standard operator names with a -- \'*\' attached. We keep the standard alphanumeric names as they can be -- easily qualified. -- module Data.Array.Accelerate.Language ( -- * Array and scalar expressions Acc, Exp, -- re-exporting from 'Smart' -- * Scalar introduction constant, -- re-exporting from 'Smart' -- * Array construction use, unit, replicate, generate, -- * Shape manipulation reshape, -- * Extraction of subarrays slice, -- * Map-like functions map, zipWith, -- * Reductions fold, fold1, foldSeg, fold1Seg, -- * Scan functions scanl, scanl', scanl1, scanr, scanr', scanr1, -- * Permutations permute, backpermute, -- * Stencil operations stencil, stencil2, -- ** Stencil specification Boundary(..), Stencil, -- ** Common stencil types Stencil3, Stencil5, Stencil7, Stencil9, Stencil3x3, Stencil5x3, Stencil3x5, Stencil5x5, Stencil3x3x3, Stencil5x3x3, Stencil3x5x3, Stencil3x3x5, Stencil5x5x3, Stencil5x3x5, Stencil3x5x5, Stencil5x5x5, -- * Foreign functions foreignAcc, foreignAcc2, foreignAcc3, foreignExp, foreignExp2, foreignExp3, -- * Pipelining (>->), -- * Array-level flow-control acond, awhile, -- * Index construction and destruction indexHead, indexTail, toIndex, fromIndex, intersect, -- * Flow-control cond, while, -- * Array operations with a scalar result (!), (!!), shape, size, shapeSize, -- * Methods of H98 classes that we need to redefine as their signatures change (==*), (/=*), (<*), (<=*), (>*), (>=*), bit, setBit, clearBit, complementBit, testBit, shift, shiftL, shiftR, rotate, rotateL, rotateR, truncate, round, floor, ceiling, even, odd, -- * Standard functions that we need to redefine as their signatures change (&&*), (||*), not, -- * Conversions ord, chr, boolToInt, fromIntegral, -- * Constants ignore -- Instances of Bounded, Enum, Eq, Ord, Bits, Num, Real, Floating, -- Fractional, RealFrac, RealFloat ) where -- standard libraries import Prelude ( Bounded, Enum, Num, Real, Integral, Floating, Fractional, RealFloat, RealFrac, Eq, Ord, Bool, Char, String, (.), ($), error ) import Data.Bits ( Bits((.&.), (.|.), xor, complement) ) import qualified Prelude as P import Text.Printf -- friends import Data.Array.Accelerate.Type import Data.Array.Accelerate.Smart import Data.Array.Accelerate.Array.Sugar hiding ((!), ignore, shape, size, toIndex, fromIndex, intersect) import qualified Data.Array.Accelerate.Array.Sugar as Sugar -- Array introduction -- ------------------ -- | Array inlet: makes an array available for processing using the Accelerate -- language. -- -- Depending upon the backend used to execute array computations, this may -- trigger (asynchronous) data transfer. -- use :: Arrays arrays => arrays -> Acc arrays use = Acc . Use -- | Scalar inlet: injects a scalar (or a tuple of scalars) into a singleton -- array for use in the Accelerate language. -- unit :: Elt e => Exp e -> Acc (Scalar e) unit = Acc . Unit -- | Replicate an array across one or more dimensions as specified by the -- /generalised/ array index provided as the first argument. -- -- For example, assuming 'arr' is a vector (one-dimensional array), -- -- > replicate (lift (Z :. (2::Int) :. All :. (3::Int))) arr -- -- yields a three dimensional array, where 'arr' is replicated twice across the -- first and three times across the third dimension. -- replicate :: (Slice slix, Elt e) => Exp slix -> Acc (Array (SliceShape slix) e) -> Acc (Array (FullShape slix) e) replicate = Acc $$ Replicate -- | Construct a new array by applying a function to each index. -- -- For example, the following will generate a one-dimensional array -- (`Vector`) of three floating point numbers: -- -- > generate (index1 3) (\_ -> 1.2) -- -- Or, equivalently: -- -- > generate (constant (Z :. (3::Int))) (\_ -> 1.2) -- -- Finally, the following will create an array equivalent to '[1..10]': -- -- > generate (index1 10) $ \ ix -> -- > let (Z :. i) = unlift ix -- > in fromIntegral i -- -- [/NOTE:/] -- -- Using 'generate', it is possible to introduce nested data parallelism, which -- will cause the program to fail. -- -- If the index given by the scalar function is then used to dispatch further -- parallel work, whose result is returned into 'Exp' terms by array indexing -- operations such as (`!`) or `the`, the program will fail with the error: -- '.\/Data\/Array\/Accelerate\/Trafo\/Sharing.hs:447 (convertSharingExp): inconsistent valuation \@ shared \'Exp\' tree ...'. -- generate :: (Shape ix, Elt a) => Exp ix -> (Exp ix -> Exp a) -> Acc (Array ix a) generate = Acc $$ Generate -- Shape manipulation -- ------------------ -- | Change the shape of an array without altering its contents. The 'size' of -- the source and result arrays must be identical. -- -- > precondition: size ix == size ix' -- reshape :: (Shape ix, Shape ix', Elt e) => Exp ix -> Acc (Array ix' e) -> Acc (Array ix e) reshape = Acc $$ Reshape -- Extraction of sub-arrays -- ------------------------ -- | Index an array with a /generalised/ array index, supplied as the -- second argument. The result is a new array (possibly a singleton) -- containing the selected dimensions (`All`s) in their entirety. -- -- This can be used to /cut out/ entire dimensions. The opposite of -- `replicate`. For example, if 'mat' is a two dimensional array, the -- following will select a specific row and yield a one dimensional -- result: -- -- > slice mat (lift (Z :. (2::Int) :. All)) -- -- A fully specified index (with no `All`s) would return a single element (zero -- dimensional array). -- slice :: (Slice slix, Elt e) => Acc (Array (FullShape slix) e) -> Exp slix -> Acc (Array (SliceShape slix) e) slice = Acc $$ Slice -- Map-like functions -- ------------------ -- | Apply the given function element-wise to the given array. -- map :: (Shape ix, Elt a, Elt b) => (Exp a -> Exp b) -> Acc (Array ix a) -> Acc (Array ix b) map = Acc $$ Map -- | Apply the given binary function element-wise to the two arrays. The extent of the resulting -- array is the intersection of the extents of the two source arrays. -- zipWith :: (Shape ix, Elt a, Elt b, Elt c) => (Exp a -> Exp b -> Exp c) -> Acc (Array ix a) -> Acc (Array ix b) -> Acc (Array ix c) zipWith = Acc $$$ ZipWith -- Reductions -- ---------- -- | Reduction of the innermost dimension of an array of arbitrary rank. The -- first argument needs to be an /associative/ function to enable an efficient -- parallel implementation. -- fold :: (Shape ix, Elt a) => (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array (ix:.Int) a) -> Acc (Array ix a) fold = Acc $$$ Fold -- | Variant of 'fold' that requires the reduced array to be non-empty and -- doesn't need an default value. The first argument needs to be an -- /associative/ function to enable an efficient parallel implementation. -- fold1 :: (Shape ix, Elt a) => (Exp a -> Exp a -> Exp a) -> Acc (Array (ix:.Int) a) -> Acc (Array ix a) fold1 = Acc $$ Fold1 -- | Segmented reduction along the innermost dimension. Performs one individual -- reduction per segment of the source array. These reductions proceed in -- parallel. -- -- The source array must have at least rank 1. The 'Segments' array determines -- the lengths of the logical sub-arrays, each of which is folded separately. -- foldSeg :: (Shape ix, Elt a, Elt i, IsIntegral i) => (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array (ix:.Int) a) -> Acc (Segments i) -> Acc (Array (ix:.Int) a) foldSeg = Acc $$$$ FoldSeg -- | Variant of 'foldSeg' that requires /all/ segments of the reduced array to -- be non-empty and doesn't need a default value. -- -- The source array must have at least rank 1. The 'Segments' array determines -- the lengths of the logical sub-arrays, each of which is folded separately. -- fold1Seg :: (Shape ix, Elt a, Elt i, IsIntegral i) => (Exp a -> Exp a -> Exp a) -> Acc (Array (ix:.Int) a) -> Acc (Segments i) -> Acc (Array (ix:.Int) a) fold1Seg = Acc $$$ Fold1Seg -- Scan functions -- -------------- -- | Data.List style left-to-right scan, but with the additional restriction -- that the first argument needs to be an /associative/ function to enable an -- efficient parallel implementation. The initial value (second argument) may be -- arbitrary. -- scanl :: Elt a => (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) -> Acc (Vector a) scanl = Acc $$$ Scanl -- | Variant of 'scanl', where the final result of the reduction is returned -- separately. Denotationally, we have -- -- > scanl' f e arr = (init res, unit (res!len)) -- > where -- > len = shape arr -- > res = scanl f e arr -- scanl' :: Elt a => (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) -> (Acc (Vector a), Acc (Scalar a)) scanl' = unatup2 . Acc $$$ Scanl' -- | Data.List style left-to-right scan without an initial value (aka inclusive -- scan). Again, the first argument needs to be an /associative/ function. -- Denotationally, we have -- -- > scanl1 f e arr = tail (scanl f e arr) -- scanl1 :: Elt a => (Exp a -> Exp a -> Exp a) -> Acc (Vector a) -> Acc (Vector a) scanl1 = Acc $$ Scanl1 -- | Right-to-left variant of 'scanl'. -- scanr :: Elt a => (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) -> Acc (Vector a) scanr = Acc $$$ Scanr -- | Right-to-left variant of 'scanl''. -- scanr' :: Elt a => (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) -> (Acc (Vector a), Acc (Scalar a)) scanr' = unatup2 . Acc $$$ Scanr' -- | Right-to-left variant of 'scanl1'. -- scanr1 :: Elt a => (Exp a -> Exp a -> Exp a) -> Acc (Vector a) -> Acc (Vector a) scanr1 = Acc $$ Scanr1 -- Permutations -- ------------ -- | Forward permutation specified by an index mapping. The result array is -- initialised with the given defaults and any further values that are permuted -- into the result array are added to the current value using the given -- combination function. -- -- The combination function must be /associative/ and /commutative/. Elements -- that are mapped to the magic value 'ignore' by the permutation function are -- dropped. -- permute :: (Shape ix, Shape ix', Elt a) => (Exp a -> Exp a -> Exp a) -- ^combination function -> Acc (Array ix' a) -- ^array of default values -> (Exp ix -> Exp ix') -- ^permutation -> Acc (Array ix a) -- ^array to be permuted -> Acc (Array ix' a) permute = Acc $$$$ Permute -- | Backward permutation specified by an index mapping from the destination -- array specifying which element of the source array to read. -- backpermute :: (Shape ix, Shape ix', Elt a) => Exp ix' -- ^shape of the result array -> (Exp ix' -> Exp ix) -- ^permutation -> Acc (Array ix a) -- ^source array -> Acc (Array ix' a) backpermute = Acc $$$ Backpermute -- Stencil operations -- ------------------ -- Common stencil types -- -- DIM1 stencil type type Stencil3 a = (Exp a, Exp a, Exp a) type Stencil5 a = (Exp a, Exp a, Exp a, Exp a, Exp a) type Stencil7 a = (Exp a, Exp a, Exp a, Exp a, Exp a, Exp a, Exp a) type Stencil9 a = (Exp a, Exp a, Exp a, Exp a, Exp a, Exp a, Exp a, Exp a, Exp a) -- DIM2 stencil type type Stencil3x3 a = (Stencil3 a, Stencil3 a, Stencil3 a) type Stencil5x3 a = (Stencil5 a, Stencil5 a, Stencil5 a) type Stencil3x5 a = (Stencil3 a, Stencil3 a, Stencil3 a, Stencil3 a, Stencil3 a) type Stencil5x5 a = (Stencil5 a, Stencil5 a, Stencil5 a, Stencil5 a, Stencil5 a) -- DIM3 stencil type type Stencil3x3x3 a = (Stencil3x3 a, Stencil3x3 a, Stencil3x3 a) type Stencil5x3x3 a = (Stencil5x3 a, Stencil5x3 a, Stencil5x3 a) type Stencil3x5x3 a = (Stencil3x5 a, Stencil3x5 a, Stencil3x5 a) type Stencil3x3x5 a = (Stencil3x3 a, Stencil3x3 a, Stencil3x3 a, Stencil3x3 a, Stencil3x3 a) type Stencil5x5x3 a = (Stencil5x5 a, Stencil5x5 a, Stencil5x5 a) type Stencil5x3x5 a = (Stencil5x3 a, Stencil5x3 a, Stencil5x3 a, Stencil5x3 a, Stencil5x3 a) type Stencil3x5x5 a = (Stencil3x5 a, Stencil3x5 a, Stencil3x5 a, Stencil3x5 a, Stencil3x5 a) type Stencil5x5x5 a = (Stencil5x5 a, Stencil5x5 a, Stencil5x5 a, Stencil5x5 a, Stencil5x5 a) -- |Map a stencil over an array. In contrast to 'map', the domain of a stencil function is an -- entire /neighbourhood/ of each array element. Neighbourhoods are sub-arrays centred around a -- focal point. They are not necessarily rectangular, but they are symmetric in each dimension -- and have an extent of at least three in each dimensions — due to the symmetry requirement, the -- extent is necessarily odd. The focal point is the array position that is determined by the -- stencil. -- -- For those array positions where the neighbourhood extends past the boundaries of the source -- array, a boundary condition determines the contents of the out-of-bounds neighbourhood -- positions. -- stencil :: (Shape ix, Elt a, Elt b, Stencil ix a stencil) => (stencil -> Exp b) -- ^stencil function -> Boundary a -- ^boundary condition -> Acc (Array ix a) -- ^source array -> Acc (Array ix b) -- ^destination array stencil = Acc $$$ Stencil -- | Map a binary stencil of an array. The extent of the resulting array is the -- intersection of the extents of the two source arrays. -- stencil2 :: (Shape ix, Elt a, Elt b, Elt c, Stencil ix a stencil1, Stencil ix b stencil2) => (stencil1 -> stencil2 -> Exp c) -- ^binary stencil function -> Boundary a -- ^boundary condition #1 -> Acc (Array ix a) -- ^source array #1 -> Boundary b -- ^boundary condition #2 -> Acc (Array ix b) -- ^source array #2 -> Acc (Array ix c) -- ^destination array stencil2 = Acc $$$$$ Stencil2 -- Foreign function calling -- ------------------------ -- | Call a foreign function. The form the function takes is dependent on the backend being used. -- The arguments are passed as either a single array or as a tuple of arrays. In addition a pure -- Accelerate version of the function needs to be provided to support backends other than the one -- being targeted. foreignAcc :: (Arrays acc, Arrays res, Foreign ff) => ff acc res -> (Acc acc -> Acc res) -> Acc acc -> Acc res foreignAcc = Acc $$$ Aforeign -- | Call a foreign function with foreign implementations for two different backends. foreignAcc2 :: (Arrays acc, Arrays res, Foreign ff1, Foreign ff2) => ff1 acc res -> ff2 acc res -> (Acc acc -> Acc res) -> Acc acc -> Acc res foreignAcc2 ff1 = Acc $$$ Aforeign ff1 $$ Acc $$$ Aforeign -- | Call a foreign function with foreign implementations for three different backends. foreignAcc3 :: (Arrays acc, Arrays res, Foreign ff1, Foreign ff2, Foreign ff3) => ff1 acc res -> ff2 acc res -> ff3 acc res -> (Acc acc -> Acc res) -> Acc acc -> Acc res foreignAcc3 ff1 ff2 = Acc $$$ Aforeign ff1 $$ Acc $$$ Aforeign ff2 $$ Acc $$$ Aforeign -- | Call a foreign expression function. The form the function takes is dependent on the -- backend being used. The arguments are passed as either a single scalar element or as a -- tuple of elements. In addition a pure Accelerate version of the function needs to be -- provided to support backends other than the one being targeted. foreignExp :: (Elt e, Elt res, Foreign ff) => ff e res -> (Exp e -> Exp res) -> Exp e -> Exp res foreignExp = Exp $$$ Foreign -- | Call a foreign function with foreign implementations for two different backends. foreignExp2 :: (Elt e, Elt res, Foreign ff1, Foreign ff2) => ff1 e res -> ff2 e res -> (Exp e -> Exp res) -> Exp e -> Exp res foreignExp2 ff1 = Exp $$$ Foreign ff1 $$ Exp $$$ Foreign -- | Call a foreign function with foreign implementations for three different backends. foreignExp3 :: (Elt e, Elt res, Foreign ff1, Foreign ff2, Foreign ff3) => ff1 e res -> ff2 e res -> ff3 e res -> (Exp e -> Exp res) -> Exp e -> Exp res foreignExp3 ff1 ff2 = Exp $$$ Foreign ff1 $$ Exp $$$ Foreign ff2 $$ Exp $$$ Foreign -- Composition of array computations -- --------------------------------- -- | Pipelining of two array computations. -- -- Denotationally, we have -- -- > (acc1 >-> acc2) arrs = let tmp = acc1 arrs in acc2 tmp -- infixl 1 >-> (>->) :: (Arrays a, Arrays b, Arrays c) => (Acc a -> Acc b) -> (Acc b -> Acc c) -> (Acc a -> Acc c) (>->) = Acc $$$ Pipe -- Flow control constructs -- ----------------------- -- | An array-level if-then-else construct. -- acond :: Arrays a => Exp Bool -- ^ if-condition -> Acc a -- ^ then-array -> Acc a -- ^ else-array -> Acc a acond = Acc $$$ Acond -- | An array-level while construct -- awhile :: Arrays a => (Acc a -> Acc (Scalar Bool)) -> (Acc a -> Acc a) -> Acc a -> Acc a awhile = Acc $$$ Awhile -- Shapes and indices -- ------------------ -- | Get the outermost dimension of a shape -- indexHead :: Slice sh => Exp (sh :. Int) -> Exp Int indexHead = Exp . IndexHead -- | Get all but the outermost element of a shape -- indexTail :: Slice sh => Exp (sh :. Int) -> Exp sh indexTail = Exp . IndexTail -- | Map a multi-dimensional index into a linear, row-major representation of an -- array. The first argument is the array shape, the second is the index. -- toIndex :: Shape sh => Exp sh -> Exp sh -> Exp Int toIndex = Exp $$ ToIndex -- | Inverse of 'toIndex' -- fromIndex :: Shape sh => Exp sh -> Exp Int -> Exp sh fromIndex = Exp $$ FromIndex -- | Intersection of two shapes -- intersect :: Shape sh => Exp sh -> Exp sh -> Exp sh intersect = Exp $$ Intersect -- Flow-control -- ------------ -- | A scalar-level if-then-else construct. -- cond :: Elt t => Exp Bool -- ^ condition -> Exp t -- ^ then-expression -> Exp t -- ^ else-expression -> Exp t cond = Exp $$$ Cond -- | While construct. Continue to apply the given function, starting with the -- initial value, until the test function evaluates to true. -- while :: Elt e => (Exp e -> Exp Bool) -> (Exp e -> Exp e) -> Exp e -> Exp e while = Exp $$$ While -- Array operations with a scalar result -- ------------------------------------- -- |Expression form that extracts a scalar from an array -- infixl 9 ! (!) :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp ix -> Exp e (!) = Exp $$ Index -- |Expression form that extracts a scalar from an array at a linear index -- infixl 9 !! (!!) :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp Int -> Exp e (!!) = Exp $$ LinearIndex -- |Expression form that yields the shape of an array -- shape :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp ix shape = Exp . Shape -- |Expression form that yields the size of an array -- size :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp Int size = shapeSize . shape -- |The total number of elements in an array of the given 'Shape' -- shapeSize :: Shape ix => Exp ix -> Exp Int shapeSize = Exp . ShapeSize -- Instances of all relevant H98 classes -- ------------------------------------- preludeError :: String -> String -> a preludeError x y = error (printf "Prelude.%s applied to EDSL types: use %s instead" x y) instance (Elt t, IsBounded t) => Bounded (Exp t) where minBound = mkMinBound maxBound = mkMaxBound instance (Elt t, IsScalar t) => Enum (Exp t) -- succ = mkSucc -- pred = mkPred -- FIXME: ops instance (Elt t, IsScalar t) => Prelude.Eq (Exp t) where -- FIXME: instance makes no sense with standard signatures (==) = preludeError "Eq.==" "(==*)" (/=) = preludeError "Eq./=" "(/=*)" instance (Elt t, IsScalar t) => Prelude.Ord (Exp t) where -- FIXME: instance makes no sense with standard signatures min = mkMin max = mkMax -- compare = error "Prelude.Ord.compare applied to EDSL types" (<) = preludeError "Ord.<" "(<*)" (<=) = preludeError "Ord.<=" "(<=*)" (>) = preludeError "Ord.>" "(>*)" (>=) = preludeError "Ord.>=" "(>=*)" instance (Elt t, IsNum t, IsIntegral t) => Bits (Exp t) where (.&.) = mkBAnd (.|.) = mkBOr xor = mkBXor complement = mkBNot -- FIXME: argh, the rest have fixed types in their signatures -- | @'shift' x i@ shifts @x@ left by @i@ bits if @i@ is positive, or right by -- @-i@ bits otherwise. Right shifts perform sign extension on signed number -- types; i.e. they fill the top bits with 1 if the @x@ is negative and with 0 -- otherwise. -- shift :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t shift x i = cond (i ==* 0) x $ cond (i <* 0) (x `shiftR` (-i)) (x `shiftL` i) -- | Shift the argument left by the specified number of bits -- (which must be non-negative). -- shiftL :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t shiftL = mkBShiftL -- | Shift the first argument right by the specified number of bits. The result -- is undefined for negative shift amounts and shift amounts greater or equal to -- the 'bitSize'. -- -- Right shifts perform sign extension on signed number types; i.e. they fill -- the top bits with 1 if the @x@ is negative and with 0 otherwise. -- shiftR :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t shiftR = mkBShiftR -- | @'rotate' x i@ rotates @x@ left by @i@ bits if @i@ is positive, or right by -- @-i@ bits otherwise. -- rotate :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t rotate x i = cond (i ==* 0) x $ cond (i <* 0) (x `rotateR` (-i)) (x `rotateL` i) -- | Rotate the argument left by the specified number of bits -- (which must be non-negative). -- rotateL :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t rotateL = mkBRotateL -- | Rotate the argument right by the specified number of bits -- (which must be non-negative). -- rotateR :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t rotateR = mkBRotateR -- | @bit i@ is a value with the @i@th bit set and all other bits clear -- bit :: (Elt t, IsIntegral t) => Exp Int -> Exp t bit x = 1 `shiftL` x -- | @x \`setBit\` i@ is the same as @x .|. bit i@ -- setBit :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t x `setBit` i = x .|. bit i -- | @x \`clearBit\` i@ is the same as @x .&. complement (bit i)@ -- clearBit :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t x `clearBit` i = x .&. complement (bit i) -- | @x \`complementBit\` i@ is the same as @x \`xor\` bit i@ -- complementBit :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp t x `complementBit` i = x `xor` bit i -- | Return 'True' if the @n@th bit of the argument is 1 -- testBit :: (Elt t, IsIntegral t) => Exp t -> Exp Int -> Exp Bool x `testBit` i = (x .&. bit i) /=* 0 instance (Elt t, IsNum t) => Num (Exp t) where (+) = mkAdd (-) = mkSub (*) = mkMul negate = mkNeg abs = mkAbs signum = mkSig fromInteger = constant . P.fromInteger instance (Elt t, IsNum t) => Real (Exp t) -- FIXME: Why did we include this class? We won't need `toRational' until -- we support rational numbers in AP computations. instance (Elt t, IsIntegral t) => Integral (Exp t) where quot = mkQuot rem = mkRem div = mkIDiv mod = mkMod -- quotRem = -- divMod = -- toInteger = -- makes no sense instance (Elt t, IsFloating t) => Floating (Exp t) where pi = mkPi sin = mkSin cos = mkCos tan = mkTan asin = mkAsin acos = mkAcos atan = mkAtan asinh = mkAsinh acosh = mkAcosh atanh = mkAtanh exp = mkExpFloating sqrt = mkSqrt log = mkLog (**) = mkFPow logBase = mkLogBase instance (Elt t, IsFloating t) => Fractional (Exp t) where (/) = mkFDiv recip = mkRecip fromRational = constant . P.fromRational instance (Elt t, IsFloating t) => RealFrac (Exp t) -- FIXME: add other ops instance (Elt t, IsFloating t) => RealFloat (Exp t) where atan2 = mkAtan2 -- FIXME: add other ops -- Methods from H98 classes, where we need other signatures -- -------------------------------------------------------- infix 4 ==*, /=*, <*, <=*, >*, >=* -- |Equality lifted into Accelerate expressions. -- (==*) :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool (==*) = mkEq -- |Inequality lifted into Accelerate expressions. -- (/=*) :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool (/=*) = mkNEq -- compare :: a -> a -> Ordering -- we have no enumerations at the moment -- compare = ... -- |Smaller-than lifted into Accelerate expressions. -- (<*) :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool (<*) = mkLt -- |Greater-or-equal lifted into Accelerate expressions. -- (>=*) :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool (>=*) = mkGtEq -- |Greater-than lifted into Accelerate expressions. -- (>*) :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool (>*) = mkGt -- |Smaller-or-equal lifted into Accelerate expressions. -- (<=*) :: (Elt t, IsScalar t) => Exp t -> Exp t -> Exp Bool (<=*) = mkLtEq -- Conversions from the RealFrac class -- -- | @truncate x@ returns the integer nearest @x@ between zero and @x@. -- truncate :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b truncate = mkTruncate -- | @round x@ returns the nearest integer to @x@, or the even integer if @x@ is -- equidistant between two integers. -- round :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b round = mkRound -- | @floor x@ returns the greatest integer not greater than @x@. -- floor :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b floor = mkFloor -- | @ceiling x@ returns the least integer not less than @x@. -- ceiling :: (Elt a, Elt b, IsFloating a, IsIntegral b) => Exp a -> Exp b ceiling = mkCeiling -- | return if the integer is even -- even :: (Elt a, IsIntegral a) => Exp a -> Exp Bool even x = x .&. 1 ==* 0 -- | return if the integer is odd -- odd :: (Elt a, IsIntegral a) => Exp a -> Exp Bool odd x = x .&. 1 ==* 1 -- Non-overloaded standard functions, where we need other signatures -- ----------------------------------------------------------------- -- |Conjunction -- infixr 3 &&* (&&*) :: Exp Bool -> Exp Bool -> Exp Bool (&&*) = mkLAnd -- |Disjunction -- infixr 2 ||* (||*) :: Exp Bool -> Exp Bool -> Exp Bool (||*) = mkLOr -- |Negation -- not :: Exp Bool -> Exp Bool not = mkLNot -- Conversions -- ----------- -- |Convert a character to an 'Int'. -- ord :: Exp Char -> Exp Int ord = mkOrd -- |Convert an 'Int' into a character. -- chr :: Exp Int -> Exp Char chr = mkChr -- |Convert a Boolean value to an 'Int', where 'False' turns into '0' and 'True' -- into '1'. -- boolToInt :: Exp Bool -> Exp Int boolToInt = mkBoolToInt -- |General coercion from integral types -- fromIntegral :: (Elt a, Elt b, IsIntegral a, IsNum b) => Exp a -> Exp b fromIntegral = mkFromIntegral -- Constants -- --------- -- |Magic value identifying elements that are ignored in a forward permutation. -- Note that this currently does not work for singleton arrays. -- ignore :: Shape ix => Exp ix ignore = constant Sugar.ignore