module Data.Array.Accelerate.Interpreter (
Arrays, run, run1, stream,
evalPrim, evalPrimConst, evalPrj
) where
import Control.Monad
import Data.Bits
import Data.Char ( chr, ord )
import Prelude hiding ( sum )
import Data.Array.Accelerate.AST
import Data.Array.Accelerate.Array.Data
import Data.Array.Accelerate.Array.Representation ( SliceIndex(..) )
import Data.Array.Accelerate.Array.Sugar
import Data.Array.Accelerate.Error
import Data.Array.Accelerate.Trafo hiding ( Delayed )
import Data.Array.Accelerate.Tuple
import Data.Array.Accelerate.Type
import qualified Data.Array.Accelerate.Smart as Sugar
import qualified Data.Array.Accelerate.Trafo as AST
import qualified Data.Array.Accelerate.Array.Representation as R
run :: Arrays a => Sugar.Acc a -> a
run acc
= let a = convertAccWith config acc
in evalOpenAcc a Empty
run1 :: (Arrays a, Arrays b) => (Sugar.Acc a -> Sugar.Acc b) -> a -> b
run1 afun
= let f = convertAfunWith config afun
in evalOpenAfun f Empty
stream :: (Arrays a, Arrays b) => (Sugar.Acc a -> Sugar.Acc b) -> [a] -> [b]
stream afun arrs = let go = run1 afun
in map go arrs
config :: Phase
config = Phase
{ recoverAccSharing = True
, recoverExpSharing = True
, floatOutAccFromExp = True
, enableAccFusion = True
, convertOffsetOfSegment = False
}
data Delayed a where
Delayed :: (Shape sh, Elt e)
=> sh
-> (sh -> e)
-> (Int -> e)
-> Delayed (Array sh e)
type EvalAcc acc = forall aenv a. acc aenv a -> Val aenv -> a
evalOpenAfun :: DelayedOpenAfun aenv f -> Val aenv -> f
evalOpenAfun (Alam f) aenv = \a -> evalOpenAfun f (aenv `Push` a)
evalOpenAfun (Abody b) aenv = evalOpenAcc b aenv
evalOpenAcc
:: forall aenv a.
DelayedOpenAcc aenv a
-> Val aenv
-> a
evalOpenAcc AST.Delayed{} _ = $internalError "evalOpenAcc" "expected manifest array"
evalOpenAcc (AST.Manifest pacc) aenv =
let
manifest :: DelayedOpenAcc aenv a' -> a'
manifest acc = evalOpenAcc acc aenv
delayed :: DelayedOpenAcc aenv (Array sh e) -> Delayed (Array sh e)
delayed AST.Manifest{} = $internalError "evalOpenAcc" "expected delayed array"
delayed AST.Delayed{..} = Delayed (evalE extentD) (evalF indexD) (evalF linearIndexD)
evalE :: DelayedExp aenv t -> t
evalE exp = evalPreExp evalOpenAcc exp aenv
evalF :: DelayedFun aenv f -> f
evalF fun = evalPreFun evalOpenAcc fun aenv
in
case pacc of
Avar ix -> prj ix aenv
Alet acc1 acc2 -> evalOpenAcc acc2 (aenv `Push` manifest acc1)
Atuple atup -> toTuple $ evalAtuple atup aenv
Aprj ix atup -> evalPrj ix . fromTuple $ manifest atup
Apply afun acc -> evalOpenAfun afun aenv $ manifest acc
Aforeign _ afun acc -> evalOpenAfun afun Empty $ manifest acc
Acond p acc1 acc2
| evalE p -> manifest acc1
| otherwise -> manifest acc2
Awhile cond body acc -> go (manifest acc)
where
p = evalOpenAfun cond aenv
f = evalOpenAfun body aenv
go !x
| p x ! Z = go (f x)
| otherwise = x
Use arr -> toArr arr
Unit e -> unitOp (evalE e)
Map f acc -> mapOp (evalF f) (delayed acc)
Generate sh f -> generateOp (evalE sh) (evalF f)
Transform sh p f acc -> transformOp (evalE sh) (evalF p) (evalF f) (delayed acc)
Backpermute sh p acc -> backpermuteOp (evalE sh) (evalF p) (delayed acc)
Reshape sh acc -> reshapeOp (evalE sh) (manifest acc)
ZipWith f acc1 acc2 -> zipWithOp (evalF f) (delayed acc1) (delayed acc2)
Replicate slice slix acc -> replicateOp slice (evalE slix) (manifest acc)
Slice slice acc slix -> sliceOp slice (manifest acc) (evalE slix)
Fold f z acc -> foldOp (evalF f) (evalE z) (delayed acc)
Fold1 f acc -> fold1Op (evalF f) (delayed acc)
FoldSeg f z acc seg -> foldSegOp (evalF f) (evalE z) (delayed acc) (delayed seg)
Fold1Seg f acc seg -> fold1SegOp (evalF f) (delayed acc) (delayed seg)
Scanl f z acc -> scanlOp (evalF f) (evalE z) (delayed acc)
Scanl' f z acc -> scanl'Op (evalF f) (evalE z) (delayed acc)
Scanl1 f acc -> scanl1Op (evalF f) (delayed acc)
Scanr f z acc -> scanrOp (evalF f) (evalE z) (delayed acc)
Scanr' f z acc -> scanr'Op (evalF f) (evalE z) (delayed acc)
Scanr1 f acc -> scanr1Op (evalF f) (delayed acc)
Permute f def p acc -> permuteOp (evalF f) (manifest def) (evalF p) (delayed acc)
Stencil sten b acc -> stencilOp (evalF sten) b (manifest acc)
Stencil2 sten b1 acc1 b2 acc2-> stencil2Op (evalF sten) b1 (manifest acc1) b2 (manifest acc2)
evalAtuple :: Atuple (DelayedOpenAcc aenv) t -> Val aenv -> t
evalAtuple NilAtup _ = ()
evalAtuple (SnocAtup t a) aenv = (evalAtuple t aenv, evalOpenAcc a aenv)
unitOp :: Elt e => e -> Scalar e
unitOp e = newArray Z (const e)
generateOp
:: (Shape sh, Elt e)
=> sh
-> (sh -> e)
-> Array sh e
generateOp = newArray
transformOp
:: (Shape sh, Shape sh', Elt b)
=> sh'
-> (sh' -> sh)
-> (a -> b)
-> Delayed (Array sh a)
-> Array sh' b
transformOp sh' p f (Delayed _ xs _)
= newArray sh' (\ix -> f (xs $ p ix))
reshapeOp
:: (Shape sh, Shape sh', Elt e)
=> sh
-> Array sh' e
-> Array sh e
reshapeOp newShape arr@(Array _ adata)
= $boundsCheck "reshape" "shape mismatch" (size newShape == size (shape arr))
$ Array (fromElt newShape) adata
replicateOp
:: (Shape sh, Shape sl, Elt slix, Elt e)
=> SliceIndex (EltRepr slix) (EltRepr sl) co (EltRepr sh)
-> slix
-> Array sl e
-> Array sh e
replicateOp slice slix arr
= newArray (toElt sh) (\ix -> arr ! liftToElt pf ix)
where
(sh, pf) = extend slice (fromElt slix) (fromElt (shape arr))
extend :: SliceIndex slix sl co dim
-> slix
-> sl
-> (dim, dim -> sl)
extend SliceNil () () = ((), const ())
extend (SliceAll sliceIdx) (slx, ()) (sl, sz)
= let (dim', f') = extend sliceIdx slx sl
in ((dim', sz), \(ix, i) -> (f' ix, i))
extend (SliceFixed sliceIdx) (slx, sz) sl
= let (dim', f') = extend sliceIdx slx sl
in ((dim', sz), \(ix, _) -> f' ix)
sliceOp
:: (Shape sh, Shape sl, Elt slix, Elt e)
=> SliceIndex (EltRepr slix) (EltRepr sl) co (EltRepr sh)
-> Array sh e
-> slix
-> Array sl e
sliceOp slice arr slix
= newArray (toElt sh) (\ix -> arr ! liftToElt pf ix)
where
(sh, pf) = restrict slice (fromElt slix) (fromElt (shape arr))
restrict :: SliceIndex slix sl co sh
-> slix
-> sh
-> (sl, sl -> sh)
restrict SliceNil () () = ((), const ())
restrict (SliceAll sliceIdx) (slx, ()) (sl, sz)
= let (sl', f') = restrict sliceIdx slx sl
in ((sl', sz), \(ix, i) -> (f' ix, i))
restrict (SliceFixed sliceIdx) (slx, i) (sl, sz)
= let (sl', f') = restrict sliceIdx slx sl
in $indexCheck "slice" i sz $ (sl', \ix -> (f' ix, i))
mapOp :: (Shape sh, Elt a, Elt b)
=> (a -> b)
-> Delayed (Array sh a)
-> Array sh b
mapOp f (Delayed sh xs _)
= newArray sh (\ix -> f (xs ix))
zipWithOp
:: (Shape sh, Elt a, Elt b, Elt c)
=> (a -> b -> c)
-> Delayed (Array sh a)
-> Delayed (Array sh b)
-> Array sh c
zipWithOp f (Delayed shx xs _) (Delayed shy ys _)
= newArray (shx `intersect` shy) (\ix -> f (xs ix) (ys ix))
foldOp
:: (Shape sh, Elt e)
=> (e -> e -> e)
-> e
-> Delayed (Array (sh :. Int) e)
-> Array sh e
foldOp f z (Delayed (sh :. n) arr _)
| size sh == 0
= newArray (listToShape . map (max 1) . shapeToList $ sh) (const z)
| otherwise
= newArray sh (\ix -> iter (Z:.n) (\(Z:.i) -> arr (ix :. i)) f z)
fold1Op
:: (Shape sh, Elt e)
=> (e -> e -> e)
-> Delayed (Array (sh :. Int) e)
-> Array sh e
fold1Op f (Delayed (sh :. n) arr _)
= newArray sh (\ix -> iter1 (Z:.n) (\(Z:.i) -> arr (ix :. i)) f)
foldSegOp
:: forall sh e i. (Shape sh, Elt e, Elt i, IsIntegral i)
=> (e -> e -> e)
-> e
-> Delayed (Array (sh :. Int) e)
-> Delayed (Segments i)
-> Array (sh :. Int) e
foldSegOp f z (Delayed (sh :. _) arr _) seg@(Delayed (Z :. n) _ _)
| IntegralDict <- integralDict (integralType :: IntegralType i)
= newArray (sh :. n)
$ \(sz :. ix) -> let start = fromIntegral $ offset ! (Z :. ix)
end = fromIntegral $ offset ! (Z :. ix+1)
in
iter (Z :. endstart) (\(Z:.i) -> arr (sz :. start+i)) f z
where
offset = scanlOp (+) 0 seg
fold1SegOp
:: forall sh e i. (Shape sh, Elt e, Elt i, IsIntegral i)
=> (e -> e -> e)
-> Delayed (Array (sh :. Int) e)
-> Delayed (Segments i)
-> Array (sh :. Int) e
fold1SegOp f (Delayed (sh :. _) arr _) seg@(Delayed (Z :. n) _ _)
| IntegralDict <- integralDict (integralType :: IntegralType i)
= newArray (sh :. n)
$ \(sz :. ix) -> let start = fromIntegral $ offset ! (Z :. ix)
end = fromIntegral $ offset ! (Z :. ix+1)
in
iter1 (Z :. endstart) (\(Z:.i) -> arr (sz :. start+i)) f
where
offset = scanlOp (+) 0 seg
scanl1Op
:: Elt e
=> (e -> e -> e)
-> Delayed (Vector e)
-> Vector e
scanl1Op f (Delayed sh@(Z :. n) _ ain)
= adata `seq` Array (fromElt sh) adata
where
f' = sinkFromElt2 f
(adata, _) = runArrayData $ do
aout <- newArrayData n
let write (Z:.0) = unsafeWriteArrayData aout 0 (fromElt $ ain 0)
write (Z:.i) = do
x <- unsafeReadArrayData aout (i1)
y <- return . fromElt $ ain i
unsafeWriteArrayData aout i (f' x y)
iter1 sh write (>>)
return (aout, undefined)
scanlOp
:: Elt e
=> (e -> e -> e)
-> e
-> Delayed (Vector e)
-> Vector e
scanlOp f z (Delayed (Z :. n) _ ain)
= adata `seq` Array (fromElt sh') adata
where
sh' = Z :. n+1
f' = sinkFromElt2 f
(adata, _) = runArrayData $ do
aout <- newArrayData (n+1)
let write (Z:.0) = unsafeWriteArrayData aout 0 (fromElt z)
write (Z:.i) = do
x <- unsafeReadArrayData aout (i1)
y <- return . fromElt $ ain (i1)
unsafeWriteArrayData aout i (f' x y)
iter sh' write (>>) (return ())
return (aout, undefined)
scanl'Op
:: Elt e
=> (e -> e -> e)
-> e
-> Delayed (Vector e)
-> (Vector e, Scalar e)
scanl'Op f z (scanlOp f z -> arr)
= let
arr' = case arr of Array _ adata -> Array ((), n1) adata
sum = unitOp (arr ! (Z:.n1))
n = size (shape arr)
in
(arr', sum)
scanrOp
:: Elt e
=> (e -> e -> e)
-> e
-> Delayed (Vector e)
-> Vector e
scanrOp f z (Delayed (Z :. n) _ ain)
= adata `seq` Array (fromElt sh') adata
where
sh' = Z :. n+1
f' = sinkFromElt2 f
(adata, _) = runArrayData $ do
aout <- newArrayData (n+1)
let write (Z:.0) = unsafeWriteArrayData aout n (fromElt z)
write (Z:.i) = do
x <- unsafeReadArrayData aout (ni+1)
y <- return . fromElt $ ain (ni)
unsafeWriteArrayData aout (ni) (f' x y)
iter sh' write (>>) (return ())
return (aout, undefined)
scanr1Op
:: Elt e
=> (e -> e -> e)
-> Delayed (Vector e)
-> Vector e
scanr1Op f (Delayed sh@(Z :. n) _ ain)
= adata `seq` Array (fromElt sh) adata
where
f' = sinkFromElt2 f
(adata, _) = runArrayData $ do
aout <- newArrayData n
let write (Z:.0) = unsafeWriteArrayData aout (n1) (fromElt $ ain (n1))
write (Z:.i) = do
x <- unsafeReadArrayData aout (ni)
y <- return . fromElt $ ain (ni1)
unsafeWriteArrayData aout (ni1) (f' x y)
iter1 sh write (>>)
return (aout, undefined)
scanr'Op
:: forall e. Elt e
=> (e -> e -> e)
-> e
-> Delayed (Vector e)
-> (Vector e, Scalar e)
scanr'Op f z (Delayed (Z :. n) _ ain)
= (Array ((),n) adata, unitOp (toElt asum))
where
f' x y = sinkFromElt2 f (fromElt x) y
(adata, asum) = runArrayData $ do
aout <- newArrayData n
let trav i !y | i < 0 = return y
trav i y = do
unsafeWriteArrayData aout i y
trav (i1) (f' (ain i) y)
final <- trav (n1) (fromElt z)
return (aout, final)
permuteOp
:: (Shape sh, Shape sh', Elt e)
=> (e -> e -> e)
-> Array sh' e
-> (sh -> sh')
-> Delayed (Array sh e)
-> Array sh' e
permuteOp f def@(Array _ adef) p (Delayed sh _ ain)
= adata `seq` Array (fromElt sh') adata
where
sh' = shape def
n' = size sh'
f' = sinkFromElt2 f
(adata, _) = runArrayData $ do
aout <- newArrayData n'
let
init i
| i >= n' = return ()
| otherwise = do
x <- unsafeReadArrayData adef i
unsafeWriteArrayData aout i x
init (i+1)
update src
= let dst = p src
i = toIndex sh src
j = toIndex sh' dst
in
unless (fromElt dst == R.ignore) $ do
x <- return . fromElt $ ain i
y <- unsafeReadArrayData aout j
unsafeWriteArrayData aout j (f' x y)
init 0
iter sh update (>>) (return ())
return (aout, undefined)
backpermuteOp
:: (Shape sh, Shape sh', Elt e)
=> sh'
-> (sh' -> sh)
-> Delayed (Array sh e)
-> Array sh' e
backpermuteOp sh' p (Delayed _ arr _)
= newArray sh' (\ix -> arr $ p ix)
stencilOp
:: (Elt a, Elt b, Stencil sh a stencil)
=> (stencil -> b)
-> Boundary (EltRepr a)
-> Array sh a
-> Array sh b
stencilOp stencil boundary arr
= newArray sh f
where
f = stencil . stencilAccess bounded
sh = shape arr
bounded ix =
case bound sh ix boundary of
Left v -> toElt v
Right ix' -> arr ! ix'
stencil2Op
:: (Elt a, Elt b, Elt c, Stencil sh a stencil1, Stencil sh b stencil2)
=> (stencil1 -> stencil2 -> c)
-> Boundary (EltRepr a)
-> Array sh a
-> Boundary (EltRepr b)
-> Array sh b
-> Array sh c
stencil2Op stencil boundary1 arr1 boundary2 arr2
= newArray (sh1 `intersect` sh2) f
where
sh1 = shape arr1
sh2 = shape arr2
f ix = stencil (stencilAccess bounded1 ix)
(stencilAccess bounded2 ix)
bounded1 ix =
case bound sh1 ix boundary1 of
Left v -> toElt v
Right ix' -> arr1 ! ix'
bounded2 ix =
case bound sh2 ix boundary2 of
Left v -> toElt v
Right ix' -> arr2 ! ix'
evalPreExp :: EvalAcc acc -> PreExp acc aenv t -> Val aenv -> t
evalPreExp evalAcc e aenv = evalPreOpenExp evalAcc e EmptyElt aenv
evalPreFun :: EvalAcc acc -> PreFun acc aenv t -> Val aenv -> t
evalPreFun evalAcc f aenv = evalPreOpenFun evalAcc f EmptyElt aenv
evalPreOpenFun :: EvalAcc acc -> PreOpenFun acc env aenv t -> ValElt env -> Val aenv -> t
evalPreOpenFun evalAcc (Body e) env aenv = evalPreOpenExp evalAcc e env aenv
evalPreOpenFun evalAcc (Lam f) env aenv =
\x -> evalPreOpenFun evalAcc f (env `PushElt` fromElt x) aenv
evalPreOpenExp
:: forall acc env aenv t.
EvalAcc acc
-> PreOpenExp acc env aenv t
-> ValElt env
-> Val aenv
-> t
evalPreOpenExp evalAcc pexp env aenv =
let
evalE :: PreOpenExp acc env aenv t' -> t'
evalE e = evalPreOpenExp evalAcc e env aenv
evalF :: PreOpenFun acc env aenv f' -> f'
evalF f = evalPreOpenFun evalAcc f env aenv
evalA :: acc aenv a -> a
evalA a = evalAcc a aenv
in
case pexp of
Let exp1 exp2 -> let !v1 = evalE exp1
env' = env `PushElt` fromElt v1
in evalPreOpenExp evalAcc exp2 env' aenv
Var ix -> prjElt ix env
Const c -> toElt c
PrimConst c -> evalPrimConst c
PrimApp f x -> evalPrim f (evalE x)
Tuple tup -> toTuple $ evalTuple evalAcc tup env aenv
Prj ix tup -> evalPrj ix . fromTuple $ evalE tup
IndexNil -> Z
IndexAny -> Any
IndexCons sh sz -> evalE sh :. evalE sz
IndexHead sh -> let _ :. ix = evalE sh in ix
IndexTail sh -> let ix :. _ = evalE sh in ix
IndexSlice slice slix sh -> toElt $ restrict slice (fromElt (evalE slix))
(fromElt (evalE sh))
where
restrict :: SliceIndex slix sl co sh -> slix -> sh -> sl
restrict SliceNil () () = ()
restrict (SliceAll sliceIdx) (slx, ()) (sl, sz) =
let sl' = restrict sliceIdx slx sl
in (sl', sz)
restrict (SliceFixed sliceIdx) (slx, _i) (sl, _sz) =
restrict sliceIdx slx sl
IndexFull slice slix sh -> toElt $ extend slice (fromElt (evalE slix))
(fromElt (evalE sh))
where
extend :: SliceIndex slix sl co sh -> slix -> sl -> sh
extend SliceNil () () = ()
extend (SliceAll sliceIdx) (slx, ()) (sl, sz) =
let sh' = extend sliceIdx slx sl
in (sh', sz)
extend (SliceFixed sliceIdx) (slx, sz) sl =
let sh' = extend sliceIdx slx sl
in (sh', sz)
ToIndex sh ix -> toIndex (evalE sh) (evalE ix)
FromIndex sh ix -> fromIndex (evalE sh) (evalE ix)
Cond c t e
| evalE c -> evalE t
| otherwise -> evalE e
While cond body seed -> go (evalE seed)
where
f = evalF body
p = evalF cond
go !x
| p x = go (f x)
| otherwise = x
Index acc ix -> evalA acc ! evalE ix
LinearIndex acc i -> let a = evalA acc
ix = fromIndex (shape a) (evalE i)
in a ! ix
Shape acc -> shape (evalA acc)
ShapeSize sh -> size (evalE sh)
Intersect sh1 sh2 -> intersect (evalE sh1) (evalE sh2)
Foreign _ f e -> evalPreOpenFun evalAcc f EmptyElt Empty $ evalE e
evalPrimConst :: PrimConst a -> a
evalPrimConst (PrimMinBound ty) = evalMinBound ty
evalPrimConst (PrimMaxBound ty) = evalMaxBound ty
evalPrimConst (PrimPi ty) = evalPi ty
evalPrim :: PrimFun p -> p
evalPrim (PrimAdd ty) = evalAdd ty
evalPrim (PrimSub ty) = evalSub ty
evalPrim (PrimMul ty) = evalMul ty
evalPrim (PrimNeg ty) = evalNeg ty
evalPrim (PrimAbs ty) = evalAbs ty
evalPrim (PrimSig ty) = evalSig ty
evalPrim (PrimQuot ty) = evalQuot ty
evalPrim (PrimRem ty) = evalRem ty
evalPrim (PrimIDiv ty) = evalIDiv ty
evalPrim (PrimMod ty) = evalMod ty
evalPrim (PrimBAnd ty) = evalBAnd ty
evalPrim (PrimBOr ty) = evalBOr ty
evalPrim (PrimBXor ty) = evalBXor ty
evalPrim (PrimBNot ty) = evalBNot ty
evalPrim (PrimBShiftL ty) = evalBShiftL ty
evalPrim (PrimBShiftR ty) = evalBShiftR ty
evalPrim (PrimBRotateL ty) = evalBRotateL ty
evalPrim (PrimBRotateR ty) = evalBRotateR ty
evalPrim (PrimFDiv ty) = evalFDiv ty
evalPrim (PrimRecip ty) = evalRecip ty
evalPrim (PrimSin ty) = evalSin ty
evalPrim (PrimCos ty) = evalCos ty
evalPrim (PrimTan ty) = evalTan ty
evalPrim (PrimAsin ty) = evalAsin ty
evalPrim (PrimAcos ty) = evalAcos ty
evalPrim (PrimAtan ty) = evalAtan ty
evalPrim (PrimAsinh ty) = evalAsinh ty
evalPrim (PrimAcosh ty) = evalAcosh ty
evalPrim (PrimAtanh ty) = evalAtanh ty
evalPrim (PrimExpFloating ty) = evalExpFloating ty
evalPrim (PrimSqrt ty) = evalSqrt ty
evalPrim (PrimLog ty) = evalLog ty
evalPrim (PrimFPow ty) = evalFPow ty
evalPrim (PrimLogBase ty) = evalLogBase ty
evalPrim (PrimTruncate ta tb) = evalTruncate ta tb
evalPrim (PrimRound ta tb) = evalRound ta tb
evalPrim (PrimFloor ta tb) = evalFloor ta tb
evalPrim (PrimCeiling ta tb) = evalCeiling ta tb
evalPrim (PrimAtan2 ty) = evalAtan2 ty
evalPrim (PrimLt ty) = evalLt ty
evalPrim (PrimGt ty) = evalGt ty
evalPrim (PrimLtEq ty) = evalLtEq ty
evalPrim (PrimGtEq ty) = evalGtEq ty
evalPrim (PrimEq ty) = evalEq ty
evalPrim (PrimNEq ty) = evalNEq ty
evalPrim (PrimMax ty) = evalMax ty
evalPrim (PrimMin ty) = evalMin ty
evalPrim PrimLAnd = evalLAnd
evalPrim PrimLOr = evalLOr
evalPrim PrimLNot = evalLNot
evalPrim PrimOrd = evalOrd
evalPrim PrimChr = evalChr
evalPrim PrimBoolToInt = evalBoolToInt
evalPrim (PrimFromIntegral ta tb) = evalFromIntegral ta tb
evalTuple :: EvalAcc acc -> Tuple (PreOpenExp acc env aenv) t -> ValElt env -> Val aenv -> t
evalTuple _ NilTup _env _aenv = ()
evalTuple evalAcc (tup `SnocTup` e) env aenv =
(evalTuple evalAcc tup env aenv, evalPreOpenExp evalAcc e env aenv)
evalPrj :: TupleIdx t e -> t -> e
evalPrj ZeroTupIdx (!_, v) = v
evalPrj (SuccTupIdx idx) (tup, !_) = evalPrj idx tup
evalLAnd :: (Bool, Bool) -> Bool
evalLAnd (x, y) = x && y
evalLOr :: (Bool, Bool) -> Bool
evalLOr (x, y) = x || y
evalLNot :: Bool -> Bool
evalLNot = not
evalOrd :: Char -> Int
evalOrd = ord
evalChr :: Int -> Char
evalChr = chr
evalBoolToInt :: Bool -> Int
evalBoolToInt = fromEnum
evalFromIntegral :: IntegralType a -> NumType b -> a -> b
evalFromIntegral ta (IntegralNumType tb)
| IntegralDict <- integralDict ta
, IntegralDict <- integralDict tb
= fromIntegral
evalFromIntegral ta (FloatingNumType tb)
| IntegralDict <- integralDict ta
, FloatingDict <- floatingDict tb
= fromIntegral
evalMinBound :: BoundedType a -> a
evalMinBound (IntegralBoundedType ty)
| IntegralDict <- integralDict ty
= minBound
evalMinBound (NonNumBoundedType ty)
| NonNumDict <- nonNumDict ty
= minBound
evalMaxBound :: BoundedType a -> a
evalMaxBound (IntegralBoundedType ty)
| IntegralDict <- integralDict ty
= maxBound
evalMaxBound (NonNumBoundedType ty)
| NonNumDict <- nonNumDict ty
= maxBound
evalPi :: FloatingType a -> a
evalPi ty | FloatingDict <- floatingDict ty = pi
evalSin :: FloatingType a -> (a -> a)
evalSin ty | FloatingDict <- floatingDict ty = sin
evalCos :: FloatingType a -> (a -> a)
evalCos ty | FloatingDict <- floatingDict ty = cos
evalTan :: FloatingType a -> (a -> a)
evalTan ty | FloatingDict <- floatingDict ty = tan
evalAsin :: FloatingType a -> (a -> a)
evalAsin ty | FloatingDict <- floatingDict ty = asin
evalAcos :: FloatingType a -> (a -> a)
evalAcos ty | FloatingDict <- floatingDict ty = acos
evalAtan :: FloatingType a -> (a -> a)
evalAtan ty | FloatingDict <- floatingDict ty = atan
evalAsinh :: FloatingType a -> (a -> a)
evalAsinh ty | FloatingDict <- floatingDict ty = asinh
evalAcosh :: FloatingType a -> (a -> a)
evalAcosh ty | FloatingDict <- floatingDict ty = acosh
evalAtanh :: FloatingType a -> (a -> a)
evalAtanh ty | FloatingDict <- floatingDict ty = atanh
evalExpFloating :: FloatingType a -> (a -> a)
evalExpFloating ty | FloatingDict <- floatingDict ty = exp
evalSqrt :: FloatingType a -> (a -> a)
evalSqrt ty | FloatingDict <- floatingDict ty = sqrt
evalLog :: FloatingType a -> (a -> a)
evalLog ty | FloatingDict <- floatingDict ty = log
evalFPow :: FloatingType a -> ((a, a) -> a)
evalFPow ty | FloatingDict <- floatingDict ty = uncurry (**)
evalLogBase :: FloatingType a -> ((a, a) -> a)
evalLogBase ty | FloatingDict <- floatingDict ty = uncurry logBase
evalTruncate :: FloatingType a -> IntegralType b -> (a -> b)
evalTruncate ta tb
| FloatingDict <- floatingDict ta
, IntegralDict <- integralDict tb
= truncate
evalRound :: FloatingType a -> IntegralType b -> (a -> b)
evalRound ta tb
| FloatingDict <- floatingDict ta
, IntegralDict <- integralDict tb
= round
evalFloor :: FloatingType a -> IntegralType b -> (a -> b)
evalFloor ta tb
| FloatingDict <- floatingDict ta
, IntegralDict <- integralDict tb
= floor
evalCeiling :: FloatingType a -> IntegralType b -> (a -> b)
evalCeiling ta tb
| FloatingDict <- floatingDict ta
, IntegralDict <- integralDict tb
= ceiling
evalAtan2 :: FloatingType a -> ((a, a) -> a)
evalAtan2 ty | FloatingDict <- floatingDict ty = uncurry atan2
evalAdd :: NumType a -> ((a, a) -> a)
evalAdd (IntegralNumType ty) | IntegralDict <- integralDict ty = uncurry (+)
evalAdd (FloatingNumType ty) | FloatingDict <- floatingDict ty = uncurry (+)
evalSub :: NumType a -> ((a, a) -> a)
evalSub (IntegralNumType ty) | IntegralDict <- integralDict ty = uncurry ()
evalSub (FloatingNumType ty) | FloatingDict <- floatingDict ty = uncurry ()
evalMul :: NumType a -> ((a, a) -> a)
evalMul (IntegralNumType ty) | IntegralDict <- integralDict ty = uncurry (*)
evalMul (FloatingNumType ty) | FloatingDict <- floatingDict ty = uncurry (*)
evalNeg :: NumType a -> (a -> a)
evalNeg (IntegralNumType ty) | IntegralDict <- integralDict ty = negate
evalNeg (FloatingNumType ty) | FloatingDict <- floatingDict ty = negate
evalAbs :: NumType a -> (a -> a)
evalAbs (IntegralNumType ty) | IntegralDict <- integralDict ty = abs
evalAbs (FloatingNumType ty) | FloatingDict <- floatingDict ty = abs
evalSig :: NumType a -> (a -> a)
evalSig (IntegralNumType ty) | IntegralDict <- integralDict ty = signum
evalSig (FloatingNumType ty) | FloatingDict <- floatingDict ty = signum
evalQuot :: IntegralType a -> ((a, a) -> a)
evalQuot ty | IntegralDict <- integralDict ty = uncurry quot
evalRem :: IntegralType a -> ((a, a) -> a)
evalRem ty | IntegralDict <- integralDict ty = uncurry rem
evalIDiv :: IntegralType a -> ((a, a) -> a)
evalIDiv ty | IntegralDict <- integralDict ty = uncurry div
evalMod :: IntegralType a -> ((a, a) -> a)
evalMod ty | IntegralDict <- integralDict ty = uncurry mod
evalBAnd :: IntegralType a -> ((a, a) -> a)
evalBAnd ty | IntegralDict <- integralDict ty = uncurry (.&.)
evalBOr :: IntegralType a -> ((a, a) -> a)
evalBOr ty | IntegralDict <- integralDict ty = uncurry (.|.)
evalBXor :: IntegralType a -> ((a, a) -> a)
evalBXor ty | IntegralDict <- integralDict ty = uncurry xor
evalBNot :: IntegralType a -> (a -> a)
evalBNot ty | IntegralDict <- integralDict ty = complement
evalBShiftL :: IntegralType a -> ((a, Int) -> a)
evalBShiftL ty | IntegralDict <- integralDict ty = uncurry shiftL
evalBShiftR :: IntegralType a -> ((a, Int) -> a)
evalBShiftR ty | IntegralDict <- integralDict ty = uncurry shiftR
evalBRotateL :: IntegralType a -> ((a, Int) -> a)
evalBRotateL ty | IntegralDict <- integralDict ty = uncurry rotateL
evalBRotateR :: IntegralType a -> ((a, Int) -> a)
evalBRotateR ty | IntegralDict <- integralDict ty = uncurry rotateR
evalFDiv :: FloatingType a -> ((a, a) -> a)
evalFDiv ty | FloatingDict <- floatingDict ty = uncurry (/)
evalRecip :: FloatingType a -> (a -> a)
evalRecip ty | FloatingDict <- floatingDict ty = recip
evalLt :: ScalarType a -> ((a, a) -> Bool)
evalLt (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry (<)
evalLt (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry (<)
evalLt (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry (<)
evalGt :: ScalarType a -> ((a, a) -> Bool)
evalGt (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry (>)
evalGt (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry (>)
evalGt (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry (>)
evalLtEq :: ScalarType a -> ((a, a) -> Bool)
evalLtEq (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry (<=)
evalLtEq (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry (<=)
evalLtEq (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry (<=)
evalGtEq :: ScalarType a -> ((a, a) -> Bool)
evalGtEq (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry (>=)
evalGtEq (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry (>=)
evalGtEq (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry (>=)
evalEq :: ScalarType a -> ((a, a) -> Bool)
evalEq (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry (==)
evalEq (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry (==)
evalEq (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry (==)
evalNEq :: ScalarType a -> ((a, a) -> Bool)
evalNEq (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry (/=)
evalNEq (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry (/=)
evalNEq (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry (/=)
evalMax :: ScalarType a -> ((a, a) -> a)
evalMax (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry max
evalMax (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry max
evalMax (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry max
evalMin :: ScalarType a -> ((a, a) -> a)
evalMin (NumScalarType (IntegralNumType ty)) | IntegralDict <- integralDict ty = uncurry min
evalMin (NumScalarType (FloatingNumType ty)) | FloatingDict <- floatingDict ty = uncurry min
evalMin (NonNumScalarType ty) | NonNumDict <- nonNumDict ty = uncurry min