/* * Copyright (c) 2017-2019 Dong Han * Copyright author of MathGeoLib (https://github.com/juj) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. http://www.apache.org/licenses/LICENSE-2.0 */ /* * Extracted from MathGeoLib, modified by Winterland1989. * * MatGeoLib grisu3.c comment: * * This file is part of an implementation of the "grisu3" double to string * conversion algorithm described in the research paper * * "Printing Floating-Point Numbers Quickly And Accurately with Integers" * by Florian Loitsch, available at * http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf */ #include #include // uint64_t etc. #include // assert #include // ceil #ifdef _MSC_VER #pragma warning(disable : 4204) // nonstandard extension used : non-constant aggregate initializer #endif #define D64_SIGN 0x8000000000000000ULL #define D64_EXP_MASK 0x7FF0000000000000ULL #define D64_FRACT_MASK 0x000FFFFFFFFFFFFFULL #define D64_IMPLICIT_ONE 0x0010000000000000ULL #define D64_EXP_POS 52 #define D64_EXP_BIAS 1075 #define D32_SIGN 0x80000000U #define D32_EXP_MASK 0x7F800000U #define D32_FRACT_MASK 0x007FFFFFU #define D32_IMPLICIT_ONE 0x00800000U #define D32_EXP_POS 23 #define D32_EXP_BIAS 150 #define DIYFP_FRACT_SIZE 64 #define D_1_LOG2_10 0.30102999566398114 // 1 / lg(10) #define MIN_TARGET_EXP -60 #define MASK32 0xFFFFFFFFULL #define CAST_U64(d) (*(uint64_t*)&d) #define CAST_U32(d) (*(uint32_t*)&d) #define MIN(x,y) ((x) <= (y) ? (x) : (y)) #define MAX(x,y) ((x) >= (y) ? (x) : (y)) #define MIN_CACHED_EXP -348 #define CACHED_EXP_STEP 8 typedef struct diy_fp { uint64_t f; int e; } diy_fp; typedef struct power { uint64_t fract; int16_t b_exp, d_exp; } power; static const power pow_cache[] = { { 0xfa8fd5a0081c0288ULL, -1220, -348 }, { 0xbaaee17fa23ebf76ULL, -1193, -340 }, { 0x8b16fb203055ac76ULL, -1166, -332 }, { 0xcf42894a5dce35eaULL, -1140, -324 }, { 0x9a6bb0aa55653b2dULL, -1113, -316 }, { 0xe61acf033d1a45dfULL, -1087, -308 }, { 0xab70fe17c79ac6caULL, -1060, -300 }, { 0xff77b1fcbebcdc4fULL, -1034, -292 }, { 0xbe5691ef416bd60cULL, -1007, -284 }, { 0x8dd01fad907ffc3cULL, -980, -276 }, { 0xd3515c2831559a83ULL, -954, -268 }, { 0x9d71ac8fada6c9b5ULL, -927, -260 }, { 0xea9c227723ee8bcbULL, -901, -252 }, { 0xaecc49914078536dULL, -874, -244 }, { 0x823c12795db6ce57ULL, -847, -236 }, { 0xc21094364dfb5637ULL, -821, -228 }, { 0x9096ea6f3848984fULL, -794, -220 }, { 0xd77485cb25823ac7ULL, -768, -212 }, { 0xa086cfcd97bf97f4ULL, -741, -204 }, { 0xef340a98172aace5ULL, -715, -196 }, { 0xb23867fb2a35b28eULL, -688, -188 }, { 0x84c8d4dfd2c63f3bULL, -661, -180 }, { 0xc5dd44271ad3cdbaULL, -635, -172 }, { 0x936b9fcebb25c996ULL, -608, -164 }, { 0xdbac6c247d62a584ULL, -582, -156 }, { 0xa3ab66580d5fdaf6ULL, -555, -148 }, { 0xf3e2f893dec3f126ULL, -529, -140 }, { 0xb5b5ada8aaff80b8ULL, -502, -132 }, { 0x87625f056c7c4a8bULL, -475, -124 }, { 0xc9bcff6034c13053ULL, -449, -116 }, { 0x964e858c91ba2655ULL, -422, -108 }, { 0xdff9772470297ebdULL, -396, -100 }, { 0xa6dfbd9fb8e5b88fULL, -369, -92 }, { 0xf8a95fcf88747d94ULL, -343, -84 }, { 0xb94470938fa89bcfULL, -316, -76 }, { 0x8a08f0f8bf0f156bULL, -289, -68 }, { 0xcdb02555653131b6ULL, -263, -60 }, { 0x993fe2c6d07b7facULL, -236, -52 }, { 0xe45c10c42a2b3b06ULL, -210, -44 }, { 0xaa242499697392d3ULL, -183, -36 }, { 0xfd87b5f28300ca0eULL, -157, -28 }, { 0xbce5086492111aebULL, -130, -20 }, { 0x8cbccc096f5088ccULL, -103, -12 }, { 0xd1b71758e219652cULL, -77, -4 }, { 0x9c40000000000000ULL, -50, 4 }, { 0xe8d4a51000000000ULL, -24, 12 }, { 0xad78ebc5ac620000ULL, 3, 20 }, { 0x813f3978f8940984ULL, 30, 28 }, { 0xc097ce7bc90715b3ULL, 56, 36 }, { 0x8f7e32ce7bea5c70ULL, 83, 44 }, { 0xd5d238a4abe98068ULL, 109, 52 }, { 0x9f4f2726179a2245ULL, 136, 60 }, { 0xed63a231d4c4fb27ULL, 162, 68 }, { 0xb0de65388cc8ada8ULL, 189, 76 }, { 0x83c7088e1aab65dbULL, 216, 84 }, { 0xc45d1df942711d9aULL, 242, 92 }, { 0x924d692ca61be758ULL, 269, 100 }, { 0xda01ee641a708deaULL, 295, 108 }, { 0xa26da3999aef774aULL, 322, 116 }, { 0xf209787bb47d6b85ULL, 348, 124 }, { 0xb454e4a179dd1877ULL, 375, 132 }, { 0x865b86925b9bc5c2ULL, 402, 140 }, { 0xc83553c5c8965d3dULL, 428, 148 }, { 0x952ab45cfa97a0b3ULL, 455, 156 }, { 0xde469fbd99a05fe3ULL, 481, 164 }, { 0xa59bc234db398c25ULL, 508, 172 }, { 0xf6c69a72a3989f5cULL, 534, 180 }, { 0xb7dcbf5354e9beceULL, 561, 188 }, { 0x88fcf317f22241e2ULL, 588, 196 }, { 0xcc20ce9bd35c78a5ULL, 614, 204 }, { 0x98165af37b2153dfULL, 641, 212 }, { 0xe2a0b5dc971f303aULL, 667, 220 }, { 0xa8d9d1535ce3b396ULL, 694, 228 }, { 0xfb9b7cd9a4a7443cULL, 720, 236 }, { 0xbb764c4ca7a44410ULL, 747, 244 }, { 0x8bab8eefb6409c1aULL, 774, 252 }, { 0xd01fef10a657842cULL, 800, 260 }, { 0x9b10a4e5e9913129ULL, 827, 268 }, { 0xe7109bfba19c0c9dULL, 853, 276 }, { 0xac2820d9623bf429ULL, 880, 284 }, { 0x80444b5e7aa7cf85ULL, 907, 292 }, { 0xbf21e44003acdd2dULL, 933, 300 }, { 0x8e679c2f5e44ff8fULL, 960, 308 }, { 0xd433179d9c8cb841ULL, 986, 316 }, { 0x9e19db92b4e31ba9ULL, 1013, 324 }, { 0xeb96bf6ebadf77d9ULL, 1039, 332 }, { 0xaf87023b9bf0ee6bULL, 1066, 340 } }; static int cached_pow(int exp, diy_fp *p) { int k = (int)ceil((exp+DIYFP_FRACT_SIZE-1) * D_1_LOG2_10); int i = (k-MIN_CACHED_EXP-1) / CACHED_EXP_STEP + 1; p->f = pow_cache[i].fract; p->e = pow_cache[i].b_exp; return pow_cache[i].d_exp; } static diy_fp minus(diy_fp x, diy_fp y) { diy_fp d; d.f = x.f - y.f; d.e = x.e; assert(x.e == y.e && x.f >= y.f); return d; } static diy_fp multiply(diy_fp x, diy_fp y) { uint64_t a, b, c, d, ac, bc, ad, bd, tmp; diy_fp r; a = x.f >> 32; b = x.f & MASK32; c = y.f >> 32; d = y.f & MASK32; ac = a*c; bc = b*c; ad = a*d; bd = b*d; tmp = (bd >> 32) + (ad & MASK32) + (bc & MASK32); tmp += 1U << 31; // round r.f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32); r.e = x.e + y.e + 64; return r; } static diy_fp normalize_diy_fp(diy_fp n) { assert(n.f != 0); while(!(n.f & 0xFFC0000000000000ULL)) { n.f <<= 10; n.e -= 10; } while(!(n.f & D64_SIGN)) { n.f <<= 1; --n.e; } return n; } static diy_fp double2diy_fp(double d) { diy_fp fp; uint64_t u64 = CAST_U64(d); if (!(u64 & D64_EXP_MASK)) { fp.f = u64 & D64_FRACT_MASK; fp.e = 1 - D64_EXP_BIAS; } else { fp.f = (u64 & D64_FRACT_MASK) + D64_IMPLICIT_ONE; fp.e = (int)((u64 & D64_EXP_MASK) >> D64_EXP_POS) - D64_EXP_BIAS; } return fp; } static diy_fp float2diy_fp(float d) { diy_fp fp; uint32_t u32 = CAST_U32(d); if (!(u32 & D32_EXP_MASK)) { fp.f = (uint64_t)u32 & D32_FRACT_MASK; fp.e = 1 - D32_EXP_BIAS; } else { fp.f = (uint64_t)((u32 & D32_FRACT_MASK) + D32_IMPLICIT_ONE); fp.e = (int)((u32 & D32_EXP_MASK) >> D32_EXP_POS) - D32_EXP_BIAS; } return fp; } // pow10_cache[i] = 10^(i-1) static const unsigned int pow10_cache[] = { 0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 }; static int largest_pow10(uint32_t n, int n_bits, uint32_t *power) { int guess = ((n_bits + 1) * 1233 >> 12) + 1/*skip first entry*/; if (n < pow10_cache[guess]) --guess; // We don't have any guarantees that 2^n_bits <= n. *power = pow10_cache[guess]; return guess; } static int round_weed(char *buffer, int len, uint64_t wp_W, uint64_t delta, uint64_t rest, uint64_t ten_kappa, uint64_t ulp) { uint64_t wp_Wup = wp_W - ulp; uint64_t wp_Wdown = wp_W + ulp; while(rest < wp_Wup && delta - rest >= ten_kappa && (rest + ten_kappa < wp_Wup || wp_Wup - rest >= rest + ten_kappa - wp_Wup)) { --buffer[len-1]; rest += ten_kappa; } if (rest < wp_Wdown && delta - rest >= ten_kappa && (rest + ten_kappa < wp_Wdown || wp_Wdown - rest > rest + ten_kappa - wp_Wdown)) return 0; return 2*ulp <= rest && rest <= delta - 4*ulp; } static int digit_gen(diy_fp low, diy_fp w, diy_fp high, char *buffer, HsInt *length, int *kappa) { uint64_t unit = 1; diy_fp too_low = { low.f - unit, low.e }; diy_fp too_high = { high.f + unit, high.e }; diy_fp unsafe_interval = minus(too_high, too_low); diy_fp one = { 1ULL << -w.e, w.e }; uint32_t p1 = (uint32_t)(too_high.f >> -one.e); uint64_t p2 = too_high.f & (one.f - 1); uint32_t div; *kappa = largest_pow10(p1, DIYFP_FRACT_SIZE + one.e, &div); *length = 0; while(*kappa > 0) { uint64_t rest; int digit = p1 / div; buffer[*length] = (char)(digit); ++*length; p1 %= div; --*kappa; rest = ((uint64_t)p1 << -one.e) + p2; if (rest < unsafe_interval.f) return round_weed(buffer, *length, minus(too_high, w).f, unsafe_interval.f, rest, (uint64_t)div << -one.e, unit); div /= 10; } for(;;) { int digit; p2 *= 10; unit *= 10; unsafe_interval.f *= 10; // Integer division by one. digit = (int)(p2 >> -one.e); buffer[*length] = (char)(digit); ++*length; p2 &= one.f - 1; // Modulo by one. --*kappa; if (p2 < unsafe_interval.f) return round_weed(buffer, *length, minus(too_high, w).f * unit, unsafe_interval.f, p2, one.f, unit); } } HsInt grisu3(double v, char *buffer, HsInt *length, HsInt *d_exp) { int mk, kappa, success; diy_fp dfp = double2diy_fp(v); diy_fp w = normalize_diy_fp(dfp); // normalize boundaries diy_fp t = { (dfp.f << 1) + 1, dfp.e - 1 }; diy_fp b_plus = normalize_diy_fp(t); diy_fp b_minus; diy_fp c_mk; // Cached power of ten: 10^-k uint64_t u64 = CAST_U64(v); assert(v > 0 && v <= 1.7976931348623157e308); // Grisu only handles strictly positive finite numbers. if (!(u64 & D64_FRACT_MASK) && (u64 & D64_EXP_MASK) != 0) { b_minus.f = (dfp.f << 2) - 1; b_minus.e = dfp.e - 2; } // lower boundary is closer? else { b_minus.f = (dfp.f << 1) - 1; b_minus.e = dfp.e - 1; } b_minus.f = b_minus.f << (b_minus.e - b_plus.e); b_minus.e = b_plus.e; mk = cached_pow(MIN_TARGET_EXP - DIYFP_FRACT_SIZE - w.e, &c_mk); w = multiply(w, c_mk); b_minus = multiply(b_minus, c_mk); b_plus = multiply(b_plus, c_mk); success = digit_gen(b_minus, w, b_plus, buffer, length, &kappa); *d_exp = kappa - mk; return (HsInt)success; } HsInt grisu3_sp(float v, char *buffer, HsInt *length, HsInt *d_exp) { int mk, kappa, success; diy_fp dfp = float2diy_fp(v); diy_fp w = normalize_diy_fp(dfp); // normalize boundaries diy_fp t = { (dfp.f << 1) + 1, dfp.e - 1 }; diy_fp b_plus = normalize_diy_fp(t); diy_fp b_minus; diy_fp c_mk; // Cached power of ten: 10^-k uint64_t u32 = CAST_U32(v); assert(v > 0 && v <= 3.4028235e38); // Grisu only handles strictly positive finite numbers. if (!(u32 & D32_FRACT_MASK) && (u32 & D32_EXP_MASK) != 0) { b_minus.f = (dfp.f << 2) - 1; b_minus.e = dfp.e - 2; } // lower boundary is closer? else { b_minus.f = (dfp.f << 1) - 1; b_minus.e = dfp.e - 1; } b_minus.f = b_minus.f << (b_minus.e - b_plus.e); b_minus.e = b_plus.e; mk = cached_pow(MIN_TARGET_EXP - DIYFP_FRACT_SIZE - w.e, &c_mk); w = multiply(w, c_mk); b_minus = multiply(b_minus, c_mk); b_plus = multiply(b_plus, c_mk); success = digit_gen(b_minus, w, b_plus, buffer, length, &kappa); *d_exp = kappa - mk; return (HsInt)success; } //////////////////////////////////////////////////////////////////////////////// static const char* digits = "0123456789abcdef"; // convert a positive uint64_t to ascii digits, with following params // sign: // -1: negative // 0: non-negative // 1: non-negative with show positive sign options // width: value smaller than necessary will be ignored // pad: // 0: no padding // 1: right space padding // 2: left space padding // 3: left zero padding // ba, off: buffer bytearray and offset // buffer must be guaranteed to be have max(width, 21) bytes left for (sign + digits) // // return: new offset for next writing HsInt c_int_dec (uint64_t x, HsInt sign, HsInt width, uint8_t pad, char* ba, HsInt off) { // writing from the right end char *start = ba + off, *end = start + (width > 21 ? width : 21), *p = end, *q = start; uint64_t mod; // encode positive number as little-endian decimal do { mod = x % 10; x = x / 10; *(--p) = digits[mod]; } while ( x ); switch(pad){ // no padding, copy to left part case 0: if (sign != 0) *(q++) = (sign == -1 ? '-' : '+'); if (q < p) { do { *(q++) = *(p++); } while (p < end); return (q - start) + off; } else return (end - start) + off; // write right space paddings case 1: if (sign != 0) *(q++) = (sign == -1 ? '-' : '+'); if (q < p) { do { *(q++) = *(p++); } while (p < end); while (q < start + width) { *(q++) = ' '; } return (q - start) + off; } else return (end - start) + off; // write left space paddings case 2: if (sign != 0) *(--p) = (sign == -1 ? '-' : '+'); while (p > end - width){ *(--p) = ' '; } if (q < p) { do { *(q++) = *(p++); } while (p < end); return (q - start) + off; } else return (end - start) + off; // write left zero paddings //case 3: default: if (sign != 0) { *(q++) = (sign == -1 ? '-' : '+'); // we have to make one byte's room for the sign while (p > end - width + 1) *(--p) = '0'; } else { while (p > end - width) *(--p) = '0'; } if (q < p) { do { *(q++) = *(p++); } while (p < end); return (q - start) + off; } else return (end -start) + off; } }