{-# OPTIONS_HADDOCK show-extensions #-} {-# LANGUAGE Safe #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} {-| Module : QuadTree Description : Region quadtrees with lens support. Copyright : (c) Ashley Moni, 2014 License : GPL-3 Maintainer : Ashley Moni <ashley.moni1@gmail.com> Stability : Stable The purpose of this module is to provide discrete region quadtrees that can be used as simple functional alternatives to 2D arrays, with lens support. @ test = set ('atLocation' (0,0)) \'d\' $ set ('atLocation' (5,5)) \'c\' $ set ('atLocation' (3,2)) \'b\' $ set ('atLocation' (2,4)) \'a\' $ 'makeTree' (6,6) \'.\' @ >>> printTree id test d..... ...... ...b.. ...... ..a... .....c -} module Data.QuadTree ( -- * Data Type & Constructor QuadTree, makeTree, -- * Index access -- $locations Location, getLocation, setLocation, atLocation, -- * Functor fuseTree, tmap, -- * Foldable -- $foldables filterTree, sortTreeBy, -- ** Tiles -- $tiles Region, Tile, -- ** Tile functions -- $tileuse tile, expand, foldTiles, filterTiles, sortTilesBy, -- * Printers showTree, printTree, -- * Miscellaneous helpers outOfBounds, treeDimensions, regionArea, inRegion ) where import Control.Lens.Type (Lens') import Control.Lens.Lens (lens) -- import Control.Lens.Setter (set) import Data.List (find, sortBy) import Data.Maybe (fromJust) import Data.Function (on) import Data.Composition ((.:)) -- Foldable: import Data.Foldable (Foldable, foldr) import Prelude hiding (foldr) ---- Structures: -- |Tuple corresponds to (X, Y) co-ordinates. type Location = (Int, Int) -- |The eponymous data type. -- -- 'QuadTree' is itself a wrapper around an internal tree structure -- along with spatial metadata about the boundaries and depth of the -- 2D area it maps to. data QuadTree a = Wrapper { wrappedTree :: Quadrant a , treeLength :: Int , treeWidth :: Int , treeDepth :: Int } deriving (Show, Read) instance Functor QuadTree where fmap fn = onQuads $ fmap fn instance Foldable QuadTree where foldr = foldTree -- data Quadrant a = Leaf a | Node (Quadrant a) (Quadrant a) (Quadrant a) (Quadrant a) deriving (Show, Read) instance Functor Quadrant where fmap fn (Leaf x) = Leaf (fn x) fmap fn (Node a b c d) = Node (fmap fn a) (fmap fn b) (fmap fn c) (fmap fn d) ---- Index access: -- $locations -- This provides an array-style interface to the 'QuadTree', albeit -- with an O(log n) lookup and insertion speed. This is both faster -- and slower than an actual array (O(1) lookup and O(n) insertion -- respectively). -- -- The user can imagine a two dimensional grid that can be modified -- or queried via co-ordinate pair indices. -- |Lens for accessing and manipulating data at a specific -- location. -- -- This is simply 'getLocation' and 'setLocation' wrapped into a lens. atLocation :: Eq a => Location -> Lens' (QuadTree a) a atLocation index = lens (getLocation index) (setLocation index) -- |Getter for the value at a given location for a 'QuadTree'. getLocation :: Location -> QuadTree a -> a getLocation index tree | outOfBounds tree index = error "Location index out of QuadTree bounds." | otherwise = go (offsetIndex tree index) (treeDepth tree) (wrappedTree tree) where go :: Location -> Int -> Quadrant a -> a go _ _ (Leaf x) = x go _ 0 _ = error "Wrapped tree is deeper than tree depth." go (x,y) n (Node a b c d) = go (x `mod` mid, y `mod` mid) (n - 1) node where mid = 2 ^ (n - 1) node | y < mid = if x < mid then a else b | otherwise = if x < mid then c else d -- |Setter for the value at a given location for a 'QuadTree'. -- -- This automatically compresses the 'QuadTree' nodes if possible with -- the new value. setLocation :: forall a. Eq a => Location -> QuadTree a -> a -> QuadTree a setLocation index tree new | outOfBounds tree index = error "Location index out of QuadTree bounds." | otherwise = onQuads (go (offsetIndex tree index) (treeDepth tree)) tree where go :: Eq a => Location -> Int -> Quadrant a -> Quadrant a go (x,y) n (Leaf old) | old == new = Leaf old | n == 0 = Leaf new | otherwise = go (x,y) n (Node l l l l) where l = Leaf old go _ 0 _ = error "Wrapped tree is deeper than tree depth." go (x,y) n (Node a b c d) = fusedNode where fusedNode = fuse newNode newNode | y < mid = if x < mid then Node (recurse a) b c d else Node a (recurse b) c d | otherwise = if x < mid then Node a b (recurse c) d else Node a b c (recurse d) recurse = go (x `mod` mid, y `mod` mid) (n - 1) mid = 2 ^ (n - 1) ---- Helpers: -- |Checks if a 'Location' is outside the boundaries of a 'QuadTree'. outOfBounds :: QuadTree a -> Location -> Bool outOfBounds tree (x,y) = x < 0 || y < 0 || x >= treeLength tree || y >= treeWidth tree -- |Dimensions of a 'QuadTree', as an Int pair. treeDimensions :: QuadTree a -> (Int, Int) -- ^ (Length, Width) treeDimensions tree = (treeLength tree, treeWidth tree) offsetIndex :: QuadTree a -> Location -> Location offsetIndex tree (x,y) = (x + xOffset, y + yOffset) where (xOffset, yOffset) = offsets tree offsets :: QuadTree a -> (Int, Int) offsets tree = (xOffset, yOffset) where xOffset = (dimension - treeLength tree) `div` 2 yOffset = (dimension - treeWidth tree) `div` 2 dimension = 2 ^ treeDepth tree fuse :: Eq a => Quadrant a -> Quadrant a fuse (Node (Leaf a) (Leaf b) (Leaf c) (Leaf d)) | a == b && b == c && c == d = Leaf a fuse oldNode = oldNode ---- Functor: onQuads :: (Quadrant a -> Quadrant b) -> QuadTree a -> QuadTree b onQuads fn tree = tree {wrappedTree = fn (wrappedTree tree)} -- |Cleanup function for use after any 'Control.Monad.fmap'. -- -- When elements of a 'QuadTree' are modified by 'setLocation' (or -- the 'atLocation' lens), it automatically compresses identical -- adjacent nodes into larger ones. This keeps the 'QuadTree' from -- bloating over constant use. -- -- 'Control.Monad.fmap' does not do this. If you wish to treat the -- 'QuadTree' as a 'Control.Monad.Functor', you should compose this -- function after to collapse it down to its minimum size. -- -- Example: -- @ -- 'fuseTree' $ 'Control.Monad.fmap' fn tree -- @ -- This particular example is reified in the function below. fuseTree :: Eq a => QuadTree a -> QuadTree a fuseTree = onQuads fuseQuads fuseQuads :: Eq a => Quadrant a -> Quadrant a fuseQuads (Node a b c d) = fuse $ Node (fuseQuads a) (fuseQuads b) (fuseQuads c) (fuseQuads d) fuseQuads leaf = leaf -- |tmap is simply 'Control.Monad.fmap' with 'fuseTree' applied after. -- -- prop> tmap fn tree == fuseTree $ fmap fn tree tmap :: Eq b => (a -> b) -> QuadTree a -> QuadTree b tmap = fuseTree .: fmap ---- Foldable: -- $foldables -- 'QuadTree's can be folded just like lists. If you simply replace -- the "Prelude" fold functions with "Data.Foldable" ones... -- -- @ -- import "Data.Foldable" -- import "Prelude" hiding (foldr, foldl, any, sum, find...) -- @ -- -- ... Then you can directly call then on 'QuadTree's without -- qualification. No list functionality will be lost since the -- "Data.Foldable" functions also work exactly like the "Prelude" -- folds for list processing. -- -- In addition you also get some extras like 'Data.Foldable.toList'. -- $tiles -- Directly folding a 'QuadTree' will expand it into a sequence of -- elements that are then folded over. For some types of operations -- this can be incredibly inefficient; it may be faster to simply -- manipulate a sequence of leaves and then later decompose the -- results into a list of elements. -- -- For these operations, we can use 'Tile's. 'Tile's are simply -- blocks of elements, represented by a tuple of the leaf data and -- some information on the spatial location and dimensions of the -- block. -- $tileuse -- The bread and butter method of manipulating 'Tile's is to first -- decompose a 'QuadTree' with 'tile', process the intermediate -- representation, and then decompose it into a final list of elements -- with 'expand'. -- -- @ -- 'expand' . fn . 'tile' $ tree -- @ -- |Rectangular area, represented by a tuple of four Ints. -- -- They correspond to (X floor, Y floor, X ceiling, Y ceiling). -- -- The co-ordinates are inclusive of all the rows and columns in all -- four Ints. -- -- prop> regionArea (x, y, x, y) == 1 type Region = (Int, Int, Int, Int) -- |Each 'Tile' is a tuple of an element from a 'QuadTree' and the -- 'Region' it subtends. type Tile a = (a, Region) foldTree :: (a -> b -> b) -> b -> QuadTree a -> b foldTree fn z = foldr fn z . expand . tile -- |Takes a list of 'Tile's and then decomposes them into a list of -- all their elements, properly weighted by 'Tile' size. expand :: [Tile a] -> [a] expand = concatMap decompose where decompose :: Tile a -> [a] decompose (a, r) = replicate (regionArea r) a -- |Returns a list of 'Tile's. The block equivalent of -- 'Data.Foldable.toList'. tile :: QuadTree a -> [Tile a] tile = foldTiles (:) [] -- |Decomposes a 'QuadTree' into its constituent 'Tile's, before -- folding a 'Tile' consuming function over all of them. foldTiles :: forall a b. (Tile a -> b -> b) -> b -> QuadTree a -> b foldTiles fn z tree = go (treeRegion tree) (wrappedTree tree) z where go :: Region -> Quadrant a -> b -> b go r (Leaf a) = fn (a, normalizedIntersection) where normalizedIntersection = (interXl - xOffset, interYt - yOffset, interXr - xOffset, interYb - yOffset) (interXl, interYt, interXr, interYb) = treeIntersection r go (xl, yt, xr, yb) (Node a b c d) = go (xl, yt, midx, midy) a . go (midx + 1, yt, xr, midy) b . go (xl, midy + 1, midx, yb) c . go (midx + 1, midy + 1, xr, yb) d where midx = (xr + xl) `div` 2 midy = (yt + yb) `div` 2 (xOffset, yOffset) = offsets tree treeIntersection = regionIntersection $ boundaries tree treeRegion :: QuadTree a -> Region treeRegion tree = (0, 0, limit, limit) where limit = (2 ^ treeDepth tree) - 1 boundaries :: QuadTree a -> Region boundaries tree = (left, top, right, bottom) where (left, top) = offsetIndex tree (0,0) (right, bottom) = offsetIndex tree (treeLength tree - 1, treeWidth tree - 1) regionIntersection :: Region -> Region -> Region regionIntersection (xl , yt , xr , yb ) (xl', yt', xr', yb') = (max xl xl', max yt yt', min xr xr', min yb yb') -- |Simple helper function that lets you calculate the area of a -- 'Region', usually for 'Data.List.replicate' purposes. regionArea :: Region -> Int regionArea (xl,yt,xr,yb) = (xr + 1 - xl) * (yb + 1 - yt) -- |Does the region contain this location? inRegion :: Location -> Region -> Bool inRegion (x,y) (xl,yt,xr,yb) = xl <= x && x <= xr && yt <= y && y <= yb ---- Foldable extras: -- |'Data.List.filter's a list of the 'QuadTree' 's elements. filterTree :: (a -> Bool) -> QuadTree a -> [a] filterTree fn = expand . filterTiles fn . tile -- |'Data.List.sortBy's a list of the 'QuadTree' 's elements. sortTreeBy :: (a -> a -> Ordering) -> QuadTree a -> [a] sortTreeBy fn = expand . sortTilesBy fn . tile -- |'Data.List.filter's a list of the 'Tile's of a 'QuadTree'. filterTiles :: (a -> Bool) -> [Tile a] -> [Tile a] filterTiles _ [] = [] filterTiles fn ((a,r) : rs) | fn a = (a,r) : filterTiles fn rs | otherwise = filterTiles fn rs -- |'Data.List.sortBy's a list of the 'Tile's of a 'QuadTree'. sortTilesBy :: (a -> a -> Ordering) -> [Tile a] -> [Tile a] sortTilesBy fn = sortBy (fn `on` fst) ---- Constructor: -- |Constructor that generates a 'QuadTree' of the given dimensions, -- with all cells filled with a default value. makeTree :: (Int, Int) -- ^ (Length, Width) -> a -- ^ Initial element to fill -> QuadTree a makeTree (x,y) a | x <= 0 || y <= 0 = error "Invalid dimensions for tree." | otherwise = Wrapper { wrappedTree = Leaf a , treeLength = x , treeWidth = y , treeDepth = fst . fromJust $ find ((>= max x y) . snd) $ zip [0..] (iterate (*2) 1) } ---- Sample Printers: -- |Generates a newline delimited string representing a 'QuadTree' as -- a 2D block of characters. -- -- Note that despite the word 'show' in the function name, this does -- not 'Text.show' the 'QuadTree'. It pretty prints it. The name -- is simply a mnemonic for its @'QuadTree' -> String@ behaviour. showTree :: (a -> Char) -- ^ Function to generate characters for each -- 'QuadTree' element. -> QuadTree a -> String showTree printer tree = breakString (treeLength tree) string where string = map printer grid grid = [getLocation (x,y) tree | y <- [0 .. treeWidth tree - 1], x <- [0 .. treeLength tree - 1]] breakString :: Int -> String -> String breakString _ [] = [] breakString n xs = a ++ "\n" ++ breakString n b where (a,b) = splitAt n xs -- |As 'showTree' above, but also prints it. printTree :: (a -> Char) -- ^ Function to generate characters for each -- 'QuadTree' element. -> QuadTree a -> IO () printTree = putStr .: showTree --------- Test: -- x' :: QuadTree Int -- x' = Wrapper { treeLength = 6 -- , treeWidth = 5 -- , treeDepth = 3 -- , wrappedTree = y' } -- y' :: Quadrant Int -- y' = Node (Leaf 0) -- (Node (Leaf 2) -- (Leaf 3) -- (Leaf 4) -- (Leaf 5)) -- (Leaf 1) -- (Leaf 9) -- basic :: QuadTree Int -- basic = Wrapper {treeLength = 4, treeWidth = 5, treeDepth = 3, -- wrappedTree = Node (Leaf 0) -- (Leaf 1) -- (Leaf 2) -- (Leaf 3)} -- x5 = set (atLocation (2,3)) 1 (makeTree (5,7) 0) -- x6 = set (atLocation (2,3)) 1 (makeTree (6,7) 0) -- p n = printTree (head . show) n -- test = set (atLocation (0,0)) 'd' $ -- set (atLocation (5,5)) 'c' $ -- set (atLocation (3,2)) 'b' $ -- set (atLocation (2,4)) 'a' $ -- makeTree (6,6) '.'