{-# OPTIONS_GHC -Wno-name-shadowing #-} -- -- Balanced binary trees -- Similar to Data.Map -- Based on https://ufal.mff.cuni.cz/~straka/papers/2011-bbtree.pdf -- module MicroHs.IdentMap( Map, empty, singleton, insertWith, insert, fromListWith, fromList, delete, lookup, size, toList, elems, keys, mapM, ) where import Prelude hiding(lookup, mapM) import MicroHs.Ident data Map a = Nil -- empty tree | One Ident a -- singleton | Node -- tree node (Map a) -- left subtree Int -- size of this tree Ident -- key stored in the node a -- element stored in the node (Map a) -- right subtree -- deriving(Show) {- instance Show a => Show (Map a) where show m = show (toList m) -} empty :: forall a . Map a empty = Nil singleton :: forall a . Ident -> a -> Map a singleton i a = One i a elems :: forall v . Map v -> [v] elems = map snd . toList keys :: forall v . Map v -> [Ident] keys = map fst . toList toList :: forall v . Map v -> [(Ident, v)] toList t = to t [] where to Nil q = q to (One k v) q = (k, v):q to (Node l _ k v r) q = to l ((k, v) : to r q) fromList :: forall v . [(Ident, v)] -> Map v fromList = fromListWith const fromListWith :: forall v . (v -> v -> v) -> [(Ident, v)] -> Map v fromListWith comb = foldr (uncurry (insertWith comb)) empty mapM :: forall m a b . Monad m => (a -> m b) -> Map a -> m (Map b) mapM _ Nil = return Nil mapM f (One k v) = One k <$> f v mapM f (Node l s k v r) = Node <$> mapM f l <*> return s <*> return k <*> f v <*> mapM f r size :: forall a . Map a -> Int size Nil = 0 size (One _ _) = 1 size (Node _ s _ _ _) = s node :: forall a . Map a -> Ident -> a -> Map a -> Map a node Nil key val Nil = One key val node left key val right = Node left (size left + 1 + size right) key val right lookup :: forall a . Ident -> Map a -> Maybe a lookup k = look where look Nil = Nothing look (One key val) = case compare k key of EQ -> Just val _ -> Nothing look (Node left _ key val right) = case k `compare` key of LT -> look left EQ -> Just val GT -> look right insert :: forall a . Ident -> a -> Map a -> Map a insert = insertWith const insertWith :: forall a . (a -> a -> a) -> Ident -> a -> Map a -> Map a insertWith comb k v = ins where ins Nil = One k v ins (One a v) = ins (Node Nil 1 a v Nil) ins (Node left _ key val right) = case k `compare` key of LT -> balance (ins left) key val right EQ -> node left k (comb v val) right GT -> balance left key val (ins right) delete :: forall a . Ident -> Map a -> Map a delete k = del where del Nil = Nil del t@(One a _) | (k `compare` a) == EQ = Nil | otherwise = t del (Node left _ key val right) = case k `compare` key of LT -> balance (del left) key val right EQ -> glue left right GT -> balance left key val (del right) where glue Nil right = right glue left Nil = left glue left right | size left > size right = let (key', val', left') = extractMax left in node left' key' val' right | otherwise = let (key', val', right') = extractMin right in node left key' val' right' extractMin :: forall a . Map a -> (Ident, a, Map a) extractMin Nil = undefined extractMin (One key val) = (key, val, Nil) extractMin (Node Nil _ key val right) = (key, val, right) extractMin (Node left _ key val right) = case extractMin left of (min, vmin, left') -> (min, vmin, balance left' key val right) extractMax :: forall a . Map a -> (Ident, a, Map a) extractMax Nil = undefined extractMax (One key val) = (key, val, Nil) extractMax (Node left _ key val Nil) = (key, val, left) extractMax (Node left _ key val right) = case extractMax right of (max, vmax, right') -> (max, vmax, balance left key val right') omega :: Int omega = 3 alpha :: Int alpha = 2 delta :: Int delta = 0 balance :: forall a . Map a -> Ident -> a -> Map a -> Map a balance left key val right | size left + size right <= 1 = node left key val right balance (One k v) key val right = balance (Node Nil 1 k v Nil) key val right balance left key val (One k v) = balance left key val (Node Nil 1 k v Nil) balance left key val right | size right > omega * size left + delta = case right of (Node rl _ _ _ rr) | size rl < alpha*size rr -> singleL left key val right | otherwise -> doubleL left key val right _ -> undefined | size left > omega * size right + delta = case left of (Node ll _ _ _ lr) | size lr < alpha*size ll -> singleR left key val right | otherwise -> doubleR left key val right _ -> undefined | otherwise = node left key val right singleL :: forall a . Map a -> Ident -> a -> Map a -> Map a singleL l k v (Node rl _ rk rv rr) = node (node l k v rl) rk rv rr singleL _ _ _ _ = undefined singleR :: forall a . Map a -> Ident -> a -> Map a -> Map a singleR (Node ll _ lk lv lr) k v r = node ll lk lv (node lr k v r) singleR _ _ _ _ = undefined doubleL :: forall a . Map a -> Ident -> a -> Map a -> Map a doubleL l k v (Node (Node rll _ rlk rlv rlr) _ rk rv rr) = node (node l k v rll) rlk rlv (node rlr rk rv rr) doubleL l k v (Node (One rlk rlv ) _ rk rv rr) = node (node l k v Nil) rlk rlv (node Nil rk rv rr) doubleL _ _ _ _ = undefined doubleR :: forall a . Map a -> Ident -> a -> Map a -> Map a doubleR (Node ll _ lk lv (Node lrl _ lrk lrv lrr)) k v r = node (node ll lk lv lrl) lrk lrv (node lrr k v r) doubleR (Node ll _ lk lv (One lrk lrv )) k v r = node (node ll lk lv Nil) lrk lrv (node Nil k v r) doubleR _ _ _ _ = undefined